| | varnish-cache/lib/libvgz/crc32.c |
0 |
|
/* crc32.c -- compute the CRC-32 of a data stream |
1 |
|
* Copyright (C) 1995-2022 Mark Adler |
2 |
|
* For conditions of distribution and use, see copyright notice in zlib.h |
3 |
|
* |
4 |
|
* This interleaved implementation of a CRC makes use of pipelined multiple |
5 |
|
* arithmetic-logic units, commonly found in modern CPU cores. It is due to |
6 |
|
* Kadatch and Jenkins (2010). See doc/crc-doc.1.0.pdf in this distribution. |
7 |
|
*/ |
8 |
|
|
9 |
|
/* @(#) $Id$ */ |
10 |
|
|
11 |
|
/* |
12 |
|
Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore |
13 |
|
protection on the static variables used to control the first-use generation |
14 |
|
of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should |
15 |
|
first call get_crc_table() to initialize the tables before allowing more than |
16 |
|
one thread to use crc32(). |
17 |
|
|
18 |
|
MAKECRCH can be #defined to write out crc32.h. A main() routine is also |
19 |
|
produced, so that this one source file can be compiled to an executable. |
20 |
|
*/ |
21 |
|
|
22 |
|
#ifdef MAKECRCH |
23 |
|
# include <stdio.h> |
24 |
|
# ifndef DYNAMIC_CRC_TABLE |
25 |
|
# define DYNAMIC_CRC_TABLE |
26 |
|
# endif /* !DYNAMIC_CRC_TABLE */ |
27 |
|
#endif /* MAKECRCH */ |
28 |
|
|
29 |
|
#include "zutil.h" /* for Z_U4, Z_U8, z_crc_t, and FAR definitions */ |
30 |
|
|
31 |
|
/* |
32 |
|
A CRC of a message is computed on N braids of words in the message, where |
33 |
|
each word consists of W bytes (4 or 8). If N is 3, for example, then three |
34 |
|
running sparse CRCs are calculated respectively on each braid, at these |
35 |
|
indices in the array of words: 0, 3, 6, ..., 1, 4, 7, ..., and 2, 5, 8, ... |
36 |
|
This is done starting at a word boundary, and continues until as many blocks |
37 |
|
of N * W bytes as are available have been processed. The results are combined |
38 |
|
into a single CRC at the end. For this code, N must be in the range 1..6 and |
39 |
|
W must be 4 or 8. The upper limit on N can be increased if desired by adding |
40 |
|
more #if blocks, extending the patterns apparent in the code. In addition, |
41 |
|
crc32.h would need to be regenerated, if the maximum N value is increased. |
42 |
|
|
43 |
|
N and W are chosen empirically by benchmarking the execution time on a given |
44 |
|
processor. The choices for N and W below were based on testing on Intel Kaby |
45 |
|
Lake i7, AMD Ryzen 7, ARM Cortex-A57, Sparc64-VII, PowerPC POWER9, and MIPS64 |
46 |
|
Octeon II processors. The Intel, AMD, and ARM processors were all fastest |
47 |
|
with N=5, W=8. The Sparc, PowerPC, and MIPS64 were all fastest at N=5, W=4. |
48 |
|
They were all tested with either gcc or clang, all using the -O3 optimization |
49 |
|
level. Your mileage may vary. |
50 |
|
*/ |
51 |
|
|
52 |
|
/* Define N */ |
53 |
|
#ifdef Z_TESTN |
54 |
|
# define N Z_TESTN |
55 |
|
#else |
56 |
|
# define N 5 |
57 |
|
#endif |
58 |
|
#if N < 1 || N > 6 |
59 |
|
# error N must be in 1..6 |
60 |
|
#endif |
61 |
|
|
62 |
|
/* |
63 |
|
z_crc_t must be at least 32 bits. z_word_t must be at least as long as |
64 |
|
z_crc_t. It is assumed here that z_word_t is either 32 bits or 64 bits, and |
65 |
|
that bytes are eight bits. |
66 |
|
*/ |
67 |
|
|
68 |
|
/* |
69 |
|
Define W and the associated z_word_t type. If W is not defined, then a |
70 |
|
braided calculation is not used, and the associated tables and code are not |
71 |
|
compiled. |
72 |
|
*/ |
73 |
|
#ifdef Z_TESTW |
74 |
|
# if Z_TESTW-1 != -1 |
75 |
|
# define W Z_TESTW |
76 |
|
# endif |
77 |
|
#else |
78 |
|
# ifdef MAKECRCH |
79 |
|
# define W 8 /* required for MAKECRCH */ |
80 |
|
# else |
81 |
|
# if defined(__x86_64__) || defined(__aarch64__) |
82 |
|
# define W 8 |
83 |
|
# else |
84 |
|
# define W 4 |
85 |
|
# endif |
86 |
|
# endif |
87 |
|
#endif |
88 |
|
#ifdef W |
89 |
|
# if W == 8 && defined(Z_U8) |
90 |
|
typedef Z_U8 z_word_t; |
91 |
|
# elif defined(Z_U4) |
92 |
|
# undef W |
93 |
|
# define W 4 |
94 |
|
typedef Z_U4 z_word_t; |
95 |
|
# else |
96 |
|
# undef W |
97 |
|
# endif |
98 |
|
#endif |
99 |
|
|
100 |
|
/* If available, use the ARM processor CRC32 instruction. */ |
101 |
|
#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) && W == 8 |
102 |
|
# define ARMCRC32 |
103 |
|
#endif |
104 |
|
|
105 |
|
#if defined(W) && (!defined(ARMCRC32) || defined(DYNAMIC_CRC_TABLE)) |
106 |
|
/* |
107 |
|
Swap the bytes in a z_word_t to convert between little and big endian. Any |
108 |
|
self-respecting compiler will optimize this to a single machine byte-swap |
109 |
|
instruction, if one is available. This assumes that word_t is either 32 bits |
110 |
|
or 64 bits. |
111 |
|
*/ |
112 |
0 |
local z_word_t byte_swap (z_word_t word) { |
113 |
|
# if W == 8 |
114 |
0 |
return |
115 |
0 |
(word & 0xff00000000000000) >> 56 | |
116 |
0 |
(word & 0xff000000000000) >> 40 | |
117 |
0 |
(word & 0xff0000000000) >> 24 | |
118 |
0 |
(word & 0xff00000000) >> 8 | |
119 |
0 |
(word & 0xff000000) << 8 | |
120 |
0 |
(word & 0xff0000) << 24 | |
121 |
0 |
(word & 0xff00) << 40 | |
122 |
0 |
(word & 0xff) << 56; |
123 |
|
# else /* W == 4 */ |
124 |
|
return |
125 |
|
(word & 0xff000000) >> 24 | |
126 |
|
(word & 0xff0000) >> 8 | |
127 |
|
(word & 0xff00) << 8 | |
128 |
|
(word & 0xff) << 24; |
129 |
|
# endif |
130 |
|
} |
131 |
|
#endif |
132 |
|
|
133 |
|
#ifdef DYNAMIC_CRC_TABLE |
134 |
|
/* ========================================================================= |
135 |
|
* Table of powers of x for combining CRC-32s, filled in by make_crc_table() |
136 |
|
* below. |
137 |
|
*/ |
138 |
|
local z_crc_t FAR x2n_table[32]; |
139 |
|
#else |
140 |
|
/* ========================================================================= |
141 |
|
* Tables for byte-wise and braided CRC-32 calculations, and a table of powers |
142 |
|
* of x for combining CRC-32s, all made by make_crc_table(). |
143 |
|
*/ |
144 |
|
# include "crc32.h" |
145 |
|
#endif |
146 |
|
|
147 |
|
/* CRC polynomial. */ |
148 |
|
#define POLY 0xedb88320 /* p(x) reflected, with x^32 implied */ |
149 |
|
|
150 |
|
/* |
151 |
|
Return a(x) multiplied by b(x) modulo p(x), where p(x) is the CRC polynomial, |
152 |
|
reflected. For speed, this requires that a not be zero. |
153 |
|
*/ |
154 |
65218 |
local z_crc_t multmodp(z_crc_t a, z_crc_t b) { |
155 |
|
z_crc_t m, p; |
156 |
|
|
157 |
65218 |
m = (z_crc_t)1 << 31; |
158 |
65218 |
p = 0; |
159 |
1653237 |
for (;;) { |
160 |
1653237 |
if (a & m) { |
161 |
670371 |
p ^= b; |
162 |
670371 |
if ((a & (m - 1)) == 0) |
163 |
65218 |
break; |
164 |
605153 |
} |
165 |
1588019 |
m >>= 1; |
166 |
1588019 |
b = b & 1 ? (b >> 1) ^ POLY : b >> 1; |
167 |
|
} |
168 |
65218 |
return p; |
169 |
|
} |
170 |
|
|
171 |
|
/* |
172 |
|
Return x^(n * 2^k) modulo p(x). Requires that x2n_table[] has been |
173 |
|
initialized. |
174 |
|
*/ |
175 |
15959 |
local z_crc_t x2nmodp(z_off64_t n, unsigned k) { |
176 |
|
z_crc_t p; |
177 |
|
|
178 |
15959 |
p = (z_crc_t)1 << 31; /* x^0 == 1 */ |
179 |
154102 |
while (n) { |
180 |
138143 |
if (n & 1) |
181 |
49258 |
p = multmodp(x2n_table[k & 31], p); |
182 |
138143 |
n >>= 1; |
183 |
138143 |
k++; |
184 |
|
} |
185 |
15959 |
return p; |
186 |
|
} |
187 |
|
|
188 |
|
#ifdef DYNAMIC_CRC_TABLE |
189 |
|
/* ========================================================================= |
190 |
|
* Build the tables for byte-wise and braided CRC-32 calculations, and a table |
191 |
|
* of powers of x for combining CRC-32s. |
192 |
|
*/ |
193 |
|
local z_crc_t FAR crc_table[256]; |
194 |
|
#ifdef W |
195 |
|
local z_word_t FAR crc_big_table[256]; |
196 |
|
local z_crc_t FAR crc_braid_table[W][256]; |
197 |
|
local z_word_t FAR crc_braid_big_table[W][256]; |
198 |
|
local void braid (z_crc_t [][256], z_word_t [][256], int, int); |
199 |
|
#endif |
200 |
|
#ifdef MAKECRCH |
201 |
|
local void write_table (FILE *, const z_crc_t FAR *, int); |
202 |
|
local void write_table32hi (FILE *, const z_word_t FAR *, int); |
203 |
|
local void write_table64 (FILE *, const z_word_t FAR *, int); |
204 |
|
#endif /* MAKECRCH */ |
205 |
|
|
206 |
|
/* |
207 |
|
Define a once() function depending on the availability of atomics. If this is |
208 |
|
compiled with DYNAMIC_CRC_TABLE defined, and if CRCs will be computed in |
209 |
|
multiple threads, and if atomics are not available, then get_crc_table() must |
210 |
|
be called to initialize the tables and must return before any threads are |
211 |
|
allowed to compute or combine CRCs. |
212 |
|
*/ |
213 |
|
|
214 |
|
/* Definition of once functionality. */ |
215 |
|
typedef struct once_s once_t; |
216 |
|
|
217 |
|
/* Check for the availability of atomics. */ |
218 |
|
#if defined(__STDC__) && __STDC_VERSION__ >= 201112L && \ |
219 |
|
!defined(__STDC_NO_ATOMICS__) |
220 |
|
|
221 |
|
#include <stdatomic.h> |
222 |
|
|
223 |
|
/* Structure for once(), which must be initialized with ONCE_INIT. */ |
224 |
|
struct once_s { |
225 |
|
atomic_flag begun; |
226 |
|
atomic_int done; |
227 |
|
}; |
228 |
|
#define ONCE_INIT {ATOMIC_FLAG_INIT, 0} |
229 |
|
|
230 |
|
/* |
231 |
|
Run the provided init() function exactly once, even if multiple threads |
232 |
|
invoke once() at the same time. The state must be a once_t initialized with |
233 |
|
ONCE_INIT. |
234 |
|
*/ |
235 |
|
local void once(once_t *state, void (*init)(void)) { |
236 |
|
if (!atomic_load(&state->done)) { |
237 |
|
if (atomic_flag_test_and_set(&state->begun)) |
238 |
|
while (!atomic_load(&state->done)) |
239 |
|
; |
240 |
|
else { |
241 |
|
init(); |
242 |
|
atomic_store(&state->done, 1); |
243 |
|
} |
244 |
|
} |
245 |
|
} |
246 |
|
|
247 |
|
#else /* no atomics */ |
248 |
|
|
249 |
|
/* Structure for once(), which must be initialized with ONCE_INIT. */ |
250 |
|
struct once_s { |
251 |
|
volatile int begun; |
252 |
|
volatile int done; |
253 |
|
}; |
254 |
|
#define ONCE_INIT {0, 0} |
255 |
|
|
256 |
|
/* Test and set. Alas, not atomic, but tries to minimize the period of |
257 |
|
vulnerability. */ |
258 |
|
local int test_and_set (int volatile *flag) { |
259 |
|
int was; |
260 |
|
|
261 |
|
was = *flag; |
262 |
|
*flag = 1; |
263 |
|
return was; |
264 |
|
} |
265 |
|
|
266 |
|
/* Run the provided init() function once. This is not thread-safe. */ |
267 |
|
local void once(once_t *state, void (*init)(void)) { |
268 |
|
if (!state->done) { |
269 |
|
if (test_and_set(&state->begun)) |
270 |
|
while (!state->done) |
271 |
|
; |
272 |
|
else { |
273 |
|
init(); |
274 |
|
state->done = 1; |
275 |
|
} |
276 |
|
} |
277 |
|
} |
278 |
|
|
279 |
|
#endif |
280 |
|
|
281 |
|
/* State for once(). */ |
282 |
|
local once_t made = ONCE_INIT; |
283 |
|
|
284 |
|
/* |
285 |
|
Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: |
286 |
|
x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. |
287 |
|
|
288 |
|
Polynomials over GF(2) are represented in binary, one bit per coefficient, |
289 |
|
with the lowest powers in the most significant bit. Then adding polynomials |
290 |
|
is just exclusive-or, and multiplying a polynomial by x is a right shift by |
291 |
|
one. If we call the above polynomial p, and represent a byte as the |
292 |
|
polynomial q, also with the lowest power in the most significant bit (so the |
293 |
|
byte 0xb1 is the polynomial x^7+x^3+x^2+1), then the CRC is (q*x^32) mod p, |
294 |
|
where a mod b means the remainder after dividing a by b. |
295 |
|
|
296 |
|
This calculation is done using the shift-register method of multiplying and |
297 |
|
taking the remainder. The register is initialized to zero, and for each |
298 |
|
incoming bit, x^32 is added mod p to the register if the bit is a one (where |
299 |
|
x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by x |
300 |
|
(which is shifting right by one and adding x^32 mod p if the bit shifted out |
301 |
|
is a one). We start with the highest power (least significant bit) of q and |
302 |
|
repeat for all eight bits of q. |
303 |
|
|
304 |
|
The table is simply the CRC of all possible eight bit values. This is all the |
305 |
|
information needed to generate CRCs on data a byte at a time for all |
306 |
|
combinations of CRC register values and incoming bytes. |
307 |
|
*/ |
308 |
|
|
309 |
|
local void make_crc_table(void) { |
310 |
|
unsigned i, j, n; |
311 |
|
z_crc_t p; |
312 |
|
|
313 |
|
/* initialize the CRC of bytes tables */ |
314 |
|
for (i = 0; i < 256; i++) { |
315 |
|
p = i; |
316 |
|
for (j = 0; j < 8; j++) |
317 |
|
p = p & 1 ? (p >> 1) ^ POLY : p >> 1; |
318 |
|
crc_table[i] = p; |
319 |
|
#ifdef W |
320 |
|
crc_big_table[i] = byte_swap(p); |
321 |
|
#endif |
322 |
|
} |
323 |
|
|
324 |
|
/* initialize the x^2^n mod p(x) table */ |
325 |
|
p = (z_crc_t)1 << 30; /* x^1 */ |
326 |
|
x2n_table[0] = p; |
327 |
|
for (n = 1; n < 32; n++) |
328 |
|
x2n_table[n] = p = multmodp(p, p); |
329 |
|
|
330 |
|
#ifdef W |
331 |
|
/* initialize the braiding tables -- needs x2n_table[] */ |
332 |
|
braid(crc_braid_table, crc_braid_big_table, N, W); |
333 |
|
#endif |
334 |
|
|
335 |
|
#ifdef MAKECRCH |
336 |
|
{ |
337 |
|
/* |
338 |
|
The crc32.h header file contains tables for both 32-bit and 64-bit |
339 |
|
z_word_t's, and so requires a 64-bit type be available. In that case, |
340 |
|
z_word_t must be defined to be 64-bits. This code then also generates |
341 |
|
and writes out the tables for the case that z_word_t is 32 bits. |
342 |
|
*/ |
343 |
|
#if !defined(W) || W != 8 |
344 |
|
# error Need a 64-bit integer type in order to generate crc32.h. |
345 |
|
#endif |
346 |
|
FILE *out; |
347 |
|
int k, n; |
348 |
|
z_crc_t ltl[8][256]; |
349 |
|
z_word_t big[8][256]; |
350 |
|
|
351 |
|
out = fopen("crc32.h", "w"); |
352 |
|
if (out == NULL) return; |
353 |
|
|
354 |
|
/* write out little-endian CRC table to crc32.h */ |
355 |
|
fprintf(out, |
356 |
|
"/* crc32.h -- tables for rapid CRC calculation\n" |
357 |
|
" * Generated automatically by crc32.c\n */\n" |
358 |
|
"\n" |
359 |
|
"local const z_crc_t FAR crc_table[] = {\n" |
360 |
|
" "); |
361 |
|
write_table(out, crc_table, 256); |
362 |
|
fprintf(out, |
363 |
|
"};\n"); |
364 |
|
|
365 |
|
/* write out big-endian CRC table for 64-bit z_word_t to crc32.h */ |
366 |
|
fprintf(out, |
367 |
|
"\n" |
368 |
|
"#ifdef W\n" |
369 |
|
"\n" |
370 |
|
"#if W == 8\n" |
371 |
|
"\n" |
372 |
|
"local const z_word_t FAR crc_big_table[] = {\n" |
373 |
|
" "); |
374 |
|
write_table64(out, crc_big_table, 256); |
375 |
|
fprintf(out, |
376 |
|
"};\n"); |
377 |
|
|
378 |
|
/* write out big-endian CRC table for 32-bit z_word_t to crc32.h */ |
379 |
|
fprintf(out, |
380 |
|
"\n" |
381 |
|
"#else /* W == 4 */\n" |
382 |
|
"\n" |
383 |
|
"local const z_word_t FAR crc_big_table[] = {\n" |
384 |
|
" "); |
385 |
|
write_table32hi(out, crc_big_table, 256); |
386 |
|
fprintf(out, |
387 |
|
"};\n" |
388 |
|
"\n" |
389 |
|
"#endif\n"); |
390 |
|
|
391 |
|
/* write out braid tables for each value of N */ |
392 |
|
for (n = 1; n <= 6; n++) { |
393 |
|
fprintf(out, |
394 |
|
"\n" |
395 |
|
"#if N == %d\n", n); |
396 |
|
|
397 |
|
/* compute braid tables for this N and 64-bit word_t */ |
398 |
|
braid(ltl, big, n, 8); |
399 |
|
|
400 |
|
/* write out braid tables for 64-bit z_word_t to crc32.h */ |
401 |
|
fprintf(out, |
402 |
|
"\n" |
403 |
|
"#if W == 8\n" |
404 |
|
"\n" |
405 |
|
"local const z_crc_t FAR crc_braid_table[][256] = {\n"); |
406 |
|
for (k = 0; k < 8; k++) { |
407 |
|
fprintf(out, " {"); |
408 |
|
write_table(out, ltl[k], 256); |
409 |
|
fprintf(out, "}%s", k < 7 ? ",\n" : ""); |
410 |
|
} |
411 |
|
fprintf(out, |
412 |
|
"};\n" |
413 |
|
"\n" |
414 |
|
"local const z_word_t FAR crc_braid_big_table[][256] = {\n"); |
415 |
|
for (k = 0; k < 8; k++) { |
416 |
|
fprintf(out, " {"); |
417 |
|
write_table64(out, big[k], 256); |
418 |
|
fprintf(out, "}%s", k < 7 ? ",\n" : ""); |
419 |
|
} |
420 |
|
fprintf(out, |
421 |
|
"};\n"); |
422 |
|
|
423 |
|
/* compute braid tables for this N and 32-bit word_t */ |
424 |
|
braid(ltl, big, n, 4); |
425 |
|
|
426 |
|
/* write out braid tables for 32-bit z_word_t to crc32.h */ |
427 |
|
fprintf(out, |
428 |
|
"\n" |
429 |
|
"#else /* W == 4 */\n" |
430 |
|
"\n" |
431 |
|
"local const z_crc_t FAR crc_braid_table[][256] = {\n"); |
432 |
|
for (k = 0; k < 4; k++) { |
433 |
|
fprintf(out, " {"); |
434 |
|
write_table(out, ltl[k], 256); |
435 |
|
fprintf(out, "}%s", k < 3 ? ",\n" : ""); |
436 |
|
} |
437 |
|
fprintf(out, |
438 |
|
"};\n" |
439 |
|
"\n" |
440 |
|
"local const z_word_t FAR crc_braid_big_table[][256] = {\n"); |
441 |
|
for (k = 0; k < 4; k++) { |
442 |
|
fprintf(out, " {"); |
443 |
|
write_table32hi(out, big[k], 256); |
444 |
|
fprintf(out, "}%s", k < 3 ? ",\n" : ""); |
445 |
|
} |
446 |
|
fprintf(out, |
447 |
|
"};\n" |
448 |
|
"\n" |
449 |
|
"#endif\n" |
450 |
|
"\n" |
451 |
|
"#endif\n"); |
452 |
|
} |
453 |
|
fprintf(out, |
454 |
|
"\n" |
455 |
|
"#endif\n"); |
456 |
|
|
457 |
|
/* write out zeros operator table to crc32.h */ |
458 |
|
fprintf(out, |
459 |
|
"\n" |
460 |
|
"local const z_crc_t FAR x2n_table[] = {\n" |
461 |
|
" "); |
462 |
|
write_table(out, x2n_table, 32); |
463 |
|
fprintf(out, |
464 |
|
"};\n"); |
465 |
|
fclose(out); |
466 |
|
} |
467 |
|
#endif /* MAKECRCH */ |
468 |
|
} |
469 |
|
|
470 |
|
#ifdef MAKECRCH |
471 |
|
|
472 |
|
/* |
473 |
|
Write the 32-bit values in table[0..k-1] to out, five per line in |
474 |
|
hexadecimal separated by commas. |
475 |
|
*/ |
476 |
|
local void write_table(FILE *out, const z_crc_t FAR *table, int k) { |
477 |
|
int n; |
478 |
|
|
479 |
|
for (n = 0; n < k; n++) |
480 |
|
fprintf(out, "%s0x%08lx%s", n == 0 || n % 5 ? "" : " ", |
481 |
|
(unsigned long)(table[n]), |
482 |
|
n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", ")); |
483 |
|
} |
484 |
|
|
485 |
|
/* |
486 |
|
Write the high 32-bits of each value in table[0..k-1] to out, five per line |
487 |
|
in hexadecimal separated by commas. |
488 |
|
*/ |
489 |
|
local void write_table32hi(FILE *out, const z_word_t FAR *table, int k) { |
490 |
|
int n; |
491 |
|
|
492 |
|
for (n = 0; n < k; n++) |
493 |
|
fprintf(out, "%s0x%08lx%s", n == 0 || n % 5 ? "" : " ", |
494 |
|
(unsigned long)(table[n] >> 32), |
495 |
|
n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", ")); |
496 |
|
} |
497 |
|
|
498 |
|
/* |
499 |
|
Write the 64-bit values in table[0..k-1] to out, three per line in |
500 |
|
hexadecimal separated by commas. This assumes that if there is a 64-bit |
501 |
|
type, then there is also a long long integer type, and it is at least 64 |
502 |
|
bits. If not, then the type cast and format string can be adjusted |
503 |
|
accordingly. |
504 |
|
*/ |
505 |
|
local void write_table64(FILE *out, const z_word_t FAR *table, int k) { |
506 |
|
int n; |
507 |
|
|
508 |
|
for (n = 0; n < k; n++) |
509 |
|
fprintf(out, "%s0x%016llx%s", n == 0 || n % 3 ? "" : " ", |
510 |
|
(unsigned long long)(table[n]), |
511 |
|
n == k - 1 ? "" : (n % 3 == 2 ? ",\n" : ", ")); |
512 |
|
} |
513 |
|
|
514 |
|
/* Actually do the deed. */ |
515 |
|
int main(void) { |
516 |
|
make_crc_table(); |
517 |
|
return 0; |
518 |
|
} |
519 |
|
|
520 |
|
#endif /* MAKECRCH */ |
521 |
|
|
522 |
|
#ifdef W |
523 |
|
/* |
524 |
|
Generate the little and big-endian braid tables for the given n and z_word_t |
525 |
|
size w. Each array must have room for w blocks of 256 elements. |
526 |
|
*/ |
527 |
|
local void braid(z_crc_t ltl[][256], z_word_t big[][256], int n, int w) { |
528 |
|
int k; |
529 |
|
z_crc_t i, p, q; |
530 |
|
for (k = 0; k < w; k++) { |
531 |
|
p = x2nmodp((n * w + 3 - k) << 3, 0); |
532 |
|
ltl[k][0] = 0; |
533 |
|
big[w - 1 - k][0] = 0; |
534 |
|
for (i = 1; i < 256; i++) { |
535 |
|
ltl[k][i] = q = multmodp(i << 24, p); |
536 |
|
big[w - 1 - k][i] = byte_swap(q); |
537 |
|
} |
538 |
|
} |
539 |
|
} |
540 |
|
#endif |
541 |
|
|
542 |
|
#endif /* DYNAMIC_CRC_TABLE */ |
543 |
|
|
544 |
|
/* ========================================================================= |
545 |
|
* This function can be used by asm versions of crc32(), and to force the |
546 |
|
* generation of the CRC tables in a threaded application. |
547 |
|
*/ |
548 |
0 |
const z_crc_t FAR * ZEXPORT get_crc_table(void) { |
549 |
|
#ifdef DYNAMIC_CRC_TABLE |
550 |
|
once(&made, make_crc_table); |
551 |
|
#endif /* DYNAMIC_CRC_TABLE */ |
552 |
0 |
return (const z_crc_t FAR *)crc_table; |
553 |
|
} |
554 |
|
|
555 |
|
/* ========================================================================= |
556 |
|
* Use ARM machine instructions if available. This will compute the CRC about |
557 |
|
* ten times faster than the braided calculation. This code does not check for |
558 |
|
* the presence of the CRC instruction at run time. __ARM_FEATURE_CRC32 will |
559 |
|
* only be defined if the compilation specifies an ARM processor architecture |
560 |
|
* that has the instructions. For example, compiling with -march=armv8.1-a or |
561 |
|
* -march=armv8-a+crc, or -march=native if the compile machine has the crc32 |
562 |
|
* instructions. |
563 |
|
*/ |
564 |
|
#ifdef ARMCRC32 |
565 |
|
|
566 |
|
/* |
567 |
|
Constants empirically determined to maximize speed. These values are from |
568 |
|
measurements on a Cortex-A57. Your mileage may vary. |
569 |
|
*/ |
570 |
|
#define Z_BATCH 3990 /* number of words in a batch */ |
571 |
|
#define Z_BATCH_ZEROS 0xa10d3d0c /* computed from Z_BATCH = 3990 */ |
572 |
|
#define Z_BATCH_MIN 800 /* fewest words in a final batch */ |
573 |
|
|
574 |
|
unsigned long ZEXPORT crc32_z(unsigned long crc, const unsigned char FAR *buf, |
575 |
|
z_size_t len) { |
576 |
|
z_crc_t val; |
577 |
|
z_word_t crc1, crc2; |
578 |
|
const z_word_t *word; |
579 |
|
z_word_t val0, val1, val2; |
580 |
|
z_size_t last, last2, i; |
581 |
|
z_size_t num; |
582 |
|
|
583 |
|
/* Return initial CRC, if requested. */ |
584 |
|
if (buf == Z_NULL) return 0; |
585 |
|
|
586 |
|
#ifdef DYNAMIC_CRC_TABLE |
587 |
|
once(&made, make_crc_table); |
588 |
|
#endif /* DYNAMIC_CRC_TABLE */ |
589 |
|
|
590 |
|
/* Pre-condition the CRC */ |
591 |
|
crc = (~crc) & 0xffffffff; |
592 |
|
|
593 |
|
/* Compute the CRC up to a word boundary. */ |
594 |
|
while (len && ((z_size_t)buf & 7) != 0) { |
595 |
|
len--; |
596 |
|
val = *buf++; |
597 |
|
__asm__ volatile("crc32b %w0, %w0, %w1" : "+r"(crc) : "r"(val)); |
598 |
|
} |
599 |
|
|
600 |
|
/* Prepare to compute the CRC on full 64-bit words word[0..num-1]. */ |
601 |
|
word = (z_word_t const *)(intptr_t)buf; |
602 |
|
num = len >> 3; |
603 |
|
len &= 7; |
604 |
|
|
605 |
|
/* Do three interleaved CRCs to realize the throughput of one crc32x |
606 |
|
instruction per cycle. Each CRC is calculated on Z_BATCH words. The |
607 |
|
three CRCs are combined into a single CRC after each set of batches. */ |
608 |
|
while (num >= 3 * Z_BATCH) { |
609 |
|
crc1 = 0; |
610 |
|
crc2 = 0; |
611 |
|
for (i = 0; i < Z_BATCH; i++) { |
612 |
|
val0 = word[i]; |
613 |
|
val1 = word[i + Z_BATCH]; |
614 |
|
val2 = word[i + 2 * Z_BATCH]; |
615 |
|
__asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0)); |
616 |
|
__asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc1) : "r"(val1)); |
617 |
|
__asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc2) : "r"(val2)); |
618 |
|
} |
619 |
|
word += 3 * Z_BATCH; |
620 |
|
num -= 3 * Z_BATCH; |
621 |
|
crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc1; |
622 |
|
crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc2; |
623 |
|
} |
624 |
|
|
625 |
|
/* Do one last smaller batch with the remaining words, if there are enough |
626 |
|
to pay for the combination of CRCs. */ |
627 |
|
last = num / 3; |
628 |
|
if (last >= Z_BATCH_MIN) { |
629 |
|
last2 = last << 1; |
630 |
|
crc1 = 0; |
631 |
|
crc2 = 0; |
632 |
|
for (i = 0; i < last; i++) { |
633 |
|
val0 = word[i]; |
634 |
|
val1 = word[i + last]; |
635 |
|
val2 = word[i + last2]; |
636 |
|
__asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0)); |
637 |
|
__asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc1) : "r"(val1)); |
638 |
|
__asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc2) : "r"(val2)); |
639 |
|
} |
640 |
|
word += 3 * last; |
641 |
|
num -= 3 * last; |
642 |
|
val = x2nmodp(last, 6); |
643 |
|
crc = multmodp(val, crc) ^ crc1; |
644 |
|
crc = multmodp(val, crc) ^ crc2; |
645 |
|
} |
646 |
|
|
647 |
|
/* Compute the CRC on any remaining words. */ |
648 |
|
for (i = 0; i < num; i++) { |
649 |
|
val0 = word[i]; |
650 |
|
__asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0)); |
651 |
|
} |
652 |
|
word += num; |
653 |
|
|
654 |
|
/* Complete the CRC on any remaining bytes. */ |
655 |
|
buf = (const unsigned char FAR *)word; |
656 |
|
while (len) { |
657 |
|
len--; |
658 |
|
val = *buf++; |
659 |
|
__asm__ volatile("crc32b %w0, %w0, %w1" : "+r"(crc) : "r"(val)); |
660 |
|
} |
661 |
|
|
662 |
|
/* Return the CRC, post-conditioned. */ |
663 |
|
return crc ^ 0xffffffff; |
664 |
|
} |
665 |
|
|
666 |
|
#else |
667 |
|
|
668 |
|
#ifdef W |
669 |
|
|
670 |
|
/* |
671 |
|
Return the CRC of the W bytes in the word_t data, taking the |
672 |
|
least-significant byte of the word as the first byte of data, without any pre |
673 |
|
or post conditioning. This is used to combine the CRCs of each braid. |
674 |
|
*/ |
675 |
2211635 |
local z_crc_t crc_word (z_word_t data) { |
676 |
|
int k; |
677 |
19904715 |
for (k = 0; k < W; k++) |
678 |
17693080 |
data = (data >> 8) ^ crc_table[data & 0xff]; |
679 |
2211635 |
return (z_crc_t)data; |
680 |
|
} |
681 |
|
|
682 |
0 |
local z_word_t crc_word_big (z_word_t data) { |
683 |
|
int k; |
684 |
0 |
for (k = 0; k < W; k++) |
685 |
0 |
data = (data << 8) ^ |
686 |
0 |
crc_big_table[(data >> ((W - 1) << 3)) & 0xff]; |
687 |
0 |
return data; |
688 |
|
} |
689 |
|
|
690 |
|
#endif |
691 |
|
|
692 |
|
/* ========================================================================= */ |
693 |
2821245 |
unsigned long ZEXPORT crc32_z(unsigned long crc, const unsigned char FAR *buf, |
694 |
|
z_size_t len) { |
695 |
|
/* Return initial CRC, if requested. */ |
696 |
2821245 |
if (buf == Z_NULL) return 0; |
697 |
|
|
698 |
|
#ifdef DYNAMIC_CRC_TABLE |
699 |
|
once(&made, make_crc_table); |
700 |
|
#endif /* DYNAMIC_CRC_TABLE */ |
701 |
|
|
702 |
|
/* Pre-condition the CRC */ |
703 |
2723961 |
crc = (~crc) & 0xffffffff; |
704 |
|
|
705 |
|
#ifdef W |
706 |
|
|
707 |
|
/* If provided enough bytes, do a braided CRC calculation. */ |
708 |
2723961 |
if (len >= N * W + W - 1) { |
709 |
|
z_size_t blks; |
710 |
|
z_word_t const *words; |
711 |
|
unsigned endian; |
712 |
|
int k; |
713 |
|
|
714 |
|
/* Compute the CRC up to a z_word_t boundary. */ |
715 |
1994225 |
while (len && ((z_size_t)buf & (W - 1)) != 0) { |
716 |
1551898 |
len--; |
717 |
1551898 |
crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
718 |
|
} |
719 |
|
|
720 |
|
/* Compute the CRC on as many N z_word_t blocks as are available. */ |
721 |
442327 |
blks = len / (N * W); |
722 |
442327 |
len -= blks * N * W; |
723 |
442327 |
words = (z_word_t const *)(intptr_t)buf; |
724 |
|
|
725 |
|
/* Do endian check at execution time instead of compile time, since ARM |
726 |
|
processors can change the endianness at execution time. If the |
727 |
|
compiler knows what the endianness will be, it can optimize out the |
728 |
|
check and the unused branch. */ |
729 |
442327 |
endian = 1; |
730 |
442327 |
if (*(unsigned char *)&endian) { |
731 |
|
/* Little endian. */ |
732 |
|
|
733 |
|
z_crc_t crc0; |
734 |
|
z_word_t word0; |
735 |
|
#if N > 1 |
736 |
|
z_crc_t crc1; |
737 |
|
z_word_t word1; |
738 |
|
#if N > 2 |
739 |
|
z_crc_t crc2; |
740 |
|
z_word_t word2; |
741 |
|
#if N > 3 |
742 |
|
z_crc_t crc3; |
743 |
|
z_word_t word3; |
744 |
|
#if N > 4 |
745 |
|
z_crc_t crc4; |
746 |
|
z_word_t word4; |
747 |
|
#if N > 5 |
748 |
|
z_crc_t crc5; |
749 |
|
z_word_t word5; |
750 |
|
#endif |
751 |
|
#endif |
752 |
|
#endif |
753 |
|
#endif |
754 |
|
#endif |
755 |
|
|
756 |
|
/* Initialize the CRC for each braid. */ |
757 |
442327 |
crc0 = crc; |
758 |
|
#if N > 1 |
759 |
442327 |
crc1 = 0; |
760 |
|
#if N > 2 |
761 |
442327 |
crc2 = 0; |
762 |
|
#if N > 3 |
763 |
442327 |
crc3 = 0; |
764 |
|
#if N > 4 |
765 |
442327 |
crc4 = 0; |
766 |
|
#if N > 5 |
767 |
|
crc5 = 0; |
768 |
|
#endif |
769 |
|
#endif |
770 |
|
#endif |
771 |
|
#endif |
772 |
|
#endif |
773 |
|
|
774 |
|
/* |
775 |
|
Process the first blks-1 blocks, computing the CRCs on each braid |
776 |
|
independently. |
777 |
|
*/ |
778 |
3978877 |
while (--blks) { |
779 |
|
/* Load the word for each braid into registers. */ |
780 |
3536550 |
word0 = crc0 ^ words[0]; |
781 |
|
#if N > 1 |
782 |
3536550 |
word1 = crc1 ^ words[1]; |
783 |
|
#if N > 2 |
784 |
3536550 |
word2 = crc2 ^ words[2]; |
785 |
|
#if N > 3 |
786 |
3536550 |
word3 = crc3 ^ words[3]; |
787 |
|
#if N > 4 |
788 |
3536550 |
word4 = crc4 ^ words[4]; |
789 |
|
#if N > 5 |
790 |
|
word5 = crc5 ^ words[5]; |
791 |
|
#endif |
792 |
|
#endif |
793 |
|
#endif |
794 |
|
#endif |
795 |
|
#endif |
796 |
3536550 |
words += N; |
797 |
|
|
798 |
|
/* Compute and update the CRC for each word. The loop should |
799 |
|
get unrolled. */ |
800 |
3536550 |
crc0 = crc_braid_table[0][word0 & 0xff]; |
801 |
|
#if N > 1 |
802 |
3536550 |
crc1 = crc_braid_table[0][word1 & 0xff]; |
803 |
|
#if N > 2 |
804 |
3536550 |
crc2 = crc_braid_table[0][word2 & 0xff]; |
805 |
|
#if N > 3 |
806 |
3536550 |
crc3 = crc_braid_table[0][word3 & 0xff]; |
807 |
|
#if N > 4 |
808 |
3536550 |
crc4 = crc_braid_table[0][word4 & 0xff]; |
809 |
|
#if N > 5 |
810 |
|
crc5 = crc_braid_table[0][word5 & 0xff]; |
811 |
|
#endif |
812 |
|
#endif |
813 |
|
#endif |
814 |
|
#endif |
815 |
|
#endif |
816 |
28292400 |
for (k = 1; k < W; k++) { |
817 |
24755850 |
crc0 ^= crc_braid_table[k][(word0 >> (k << 3)) & 0xff]; |
818 |
|
#if N > 1 |
819 |
24755850 |
crc1 ^= crc_braid_table[k][(word1 >> (k << 3)) & 0xff]; |
820 |
|
#if N > 2 |
821 |
24755850 |
crc2 ^= crc_braid_table[k][(word2 >> (k << 3)) & 0xff]; |
822 |
|
#if N > 3 |
823 |
24755850 |
crc3 ^= crc_braid_table[k][(word3 >> (k << 3)) & 0xff]; |
824 |
|
#if N > 4 |
825 |
24755850 |
crc4 ^= crc_braid_table[k][(word4 >> (k << 3)) & 0xff]; |
826 |
|
#if N > 5 |
827 |
|
crc5 ^= crc_braid_table[k][(word5 >> (k << 3)) & 0xff]; |
828 |
|
#endif |
829 |
|
#endif |
830 |
|
#endif |
831 |
|
#endif |
832 |
|
#endif |
833 |
24755850 |
} |
834 |
|
} |
835 |
|
|
836 |
|
/* |
837 |
|
Process the last block, combining the CRCs of the N braids at the |
838 |
|
same time. |
839 |
|
*/ |
840 |
442327 |
crc = crc_word(crc0 ^ words[0]); |
841 |
|
#if N > 1 |
842 |
442327 |
crc = crc_word(crc1 ^ words[1] ^ crc); |
843 |
|
#if N > 2 |
844 |
442327 |
crc = crc_word(crc2 ^ words[2] ^ crc); |
845 |
|
#if N > 3 |
846 |
442327 |
crc = crc_word(crc3 ^ words[3] ^ crc); |
847 |
|
#if N > 4 |
848 |
442327 |
crc = crc_word(crc4 ^ words[4] ^ crc); |
849 |
|
#if N > 5 |
850 |
|
crc = crc_word(crc5 ^ words[5] ^ crc); |
851 |
|
#endif |
852 |
|
#endif |
853 |
|
#endif |
854 |
|
#endif |
855 |
|
#endif |
856 |
442327 |
words += N; |
857 |
442327 |
} |
858 |
|
else { |
859 |
|
/* Big endian. */ |
860 |
|
|
861 |
|
z_word_t crc0, word0, comb; |
862 |
|
#if N > 1 |
863 |
|
z_word_t crc1, word1; |
864 |
|
#if N > 2 |
865 |
|
z_word_t crc2, word2; |
866 |
|
#if N > 3 |
867 |
|
z_word_t crc3, word3; |
868 |
|
#if N > 4 |
869 |
|
z_word_t crc4, word4; |
870 |
|
#if N > 5 |
871 |
|
z_word_t crc5, word5; |
872 |
|
#endif |
873 |
|
#endif |
874 |
|
#endif |
875 |
|
#endif |
876 |
|
#endif |
877 |
|
|
878 |
|
/* Initialize the CRC for each braid. */ |
879 |
0 |
crc0 = byte_swap(crc); |
880 |
|
#if N > 1 |
881 |
0 |
crc1 = 0; |
882 |
|
#if N > 2 |
883 |
0 |
crc2 = 0; |
884 |
|
#if N > 3 |
885 |
0 |
crc3 = 0; |
886 |
|
#if N > 4 |
887 |
0 |
crc4 = 0; |
888 |
|
#if N > 5 |
889 |
|
crc5 = 0; |
890 |
|
#endif |
891 |
|
#endif |
892 |
|
#endif |
893 |
|
#endif |
894 |
|
#endif |
895 |
|
|
896 |
|
/* |
897 |
|
Process the first blks-1 blocks, computing the CRCs on each braid |
898 |
|
independently. |
899 |
|
*/ |
900 |
0 |
while (--blks) { |
901 |
|
/* Load the word for each braid into registers. */ |
902 |
0 |
word0 = crc0 ^ words[0]; |
903 |
|
#if N > 1 |
904 |
0 |
word1 = crc1 ^ words[1]; |
905 |
|
#if N > 2 |
906 |
0 |
word2 = crc2 ^ words[2]; |
907 |
|
#if N > 3 |
908 |
0 |
word3 = crc3 ^ words[3]; |
909 |
|
#if N > 4 |
910 |
0 |
word4 = crc4 ^ words[4]; |
911 |
|
#if N > 5 |
912 |
|
word5 = crc5 ^ words[5]; |
913 |
|
#endif |
914 |
|
#endif |
915 |
|
#endif |
916 |
|
#endif |
917 |
|
#endif |
918 |
0 |
words += N; |
919 |
|
|
920 |
|
/* Compute and update the CRC for each word. The loop should |
921 |
|
get unrolled. */ |
922 |
0 |
crc0 = crc_braid_big_table[0][word0 & 0xff]; |
923 |
|
#if N > 1 |
924 |
0 |
crc1 = crc_braid_big_table[0][word1 & 0xff]; |
925 |
|
#if N > 2 |
926 |
0 |
crc2 = crc_braid_big_table[0][word2 & 0xff]; |
927 |
|
#if N > 3 |
928 |
0 |
crc3 = crc_braid_big_table[0][word3 & 0xff]; |
929 |
|
#if N > 4 |
930 |
0 |
crc4 = crc_braid_big_table[0][word4 & 0xff]; |
931 |
|
#if N > 5 |
932 |
|
crc5 = crc_braid_big_table[0][word5 & 0xff]; |
933 |
|
#endif |
934 |
|
#endif |
935 |
|
#endif |
936 |
|
#endif |
937 |
|
#endif |
938 |
0 |
for (k = 1; k < W; k++) { |
939 |
0 |
crc0 ^= crc_braid_big_table[k][(word0 >> (k << 3)) & 0xff]; |
940 |
|
#if N > 1 |
941 |
0 |
crc1 ^= crc_braid_big_table[k][(word1 >> (k << 3)) & 0xff]; |
942 |
|
#if N > 2 |
943 |
0 |
crc2 ^= crc_braid_big_table[k][(word2 >> (k << 3)) & 0xff]; |
944 |
|
#if N > 3 |
945 |
0 |
crc3 ^= crc_braid_big_table[k][(word3 >> (k << 3)) & 0xff]; |
946 |
|
#if N > 4 |
947 |
0 |
crc4 ^= crc_braid_big_table[k][(word4 >> (k << 3)) & 0xff]; |
948 |
|
#if N > 5 |
949 |
|
crc5 ^= crc_braid_big_table[k][(word5 >> (k << 3)) & 0xff]; |
950 |
|
#endif |
951 |
|
#endif |
952 |
|
#endif |
953 |
|
#endif |
954 |
|
#endif |
955 |
0 |
} |
956 |
|
} |
957 |
|
|
958 |
|
/* |
959 |
|
Process the last block, combining the CRCs of the N braids at the |
960 |
|
same time. |
961 |
|
*/ |
962 |
0 |
comb = crc_word_big(crc0 ^ words[0]); |
963 |
|
#if N > 1 |
964 |
0 |
comb = crc_word_big(crc1 ^ words[1] ^ comb); |
965 |
|
#if N > 2 |
966 |
0 |
comb = crc_word_big(crc2 ^ words[2] ^ comb); |
967 |
|
#if N > 3 |
968 |
0 |
comb = crc_word_big(crc3 ^ words[3] ^ comb); |
969 |
|
#if N > 4 |
970 |
0 |
comb = crc_word_big(crc4 ^ words[4] ^ comb); |
971 |
|
#if N > 5 |
972 |
|
comb = crc_word_big(crc5 ^ words[5] ^ comb); |
973 |
|
#endif |
974 |
|
#endif |
975 |
|
#endif |
976 |
|
#endif |
977 |
|
#endif |
978 |
0 |
words += N; |
979 |
0 |
crc = byte_swap(comb); |
980 |
|
} |
981 |
|
|
982 |
|
/* |
983 |
|
Update the pointer to the remaining bytes to process. |
984 |
|
*/ |
985 |
442327 |
buf = (unsigned char const *)words; |
986 |
442327 |
} |
987 |
|
|
988 |
|
#endif /* W */ |
989 |
|
|
990 |
|
/* Complete the computation of the CRC on any remaining bytes. */ |
991 |
3650010 |
while (len >= 8) { |
992 |
926049 |
len -= 8; |
993 |
926049 |
crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
994 |
926049 |
crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
995 |
926049 |
crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
996 |
926049 |
crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
997 |
926049 |
crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
998 |
926049 |
crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
999 |
926049 |
crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
1000 |
926049 |
crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
1001 |
|
} |
1002 |
9981751 |
while (len) { |
1003 |
7257790 |
len--; |
1004 |
7257790 |
crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
1005 |
|
} |
1006 |
|
|
1007 |
|
/* Return the CRC, post-conditioned. */ |
1008 |
2723961 |
return crc ^ 0xffffffff; |
1009 |
2821245 |
} |
1010 |
|
|
1011 |
|
#endif |
1012 |
|
|
1013 |
|
/* ========================================================================= */ |
1014 |
2821245 |
unsigned long ZEXPORT crc32(unsigned long crc, const unsigned char FAR *buf, |
1015 |
|
uInt len) { |
1016 |
2821245 |
return crc32_z(crc, buf, len); |
1017 |
|
} |
1018 |
|
|
1019 |
|
/* ========================================================================= */ |
1020 |
15959 |
uLong ZEXPORT crc32_combine64(uLong crc1, uLong crc2, z_off64_t len2) { |
1021 |
|
#ifdef DYNAMIC_CRC_TABLE |
1022 |
|
once(&made, make_crc_table); |
1023 |
|
#endif /* DYNAMIC_CRC_TABLE */ |
1024 |
15959 |
return multmodp(x2nmodp(len2, 3), crc1) ^ (crc2 & 0xffffffff); |
1025 |
|
} |
1026 |
|
|
1027 |
|
/* ========================================================================= */ |
1028 |
15959 |
uLong ZEXPORT crc32_combine(uLong crc1, uLong crc2, z_off_t len2) { |
1029 |
15959 |
return crc32_combine64(crc1, crc2, (z_off64_t)len2); |
1030 |
|
} |
1031 |
|
|
1032 |
|
/* ========================================================================= */ |
1033 |
0 |
uLong ZEXPORT crc32_combine_gen64(z_off64_t len2) { |
1034 |
|
#ifdef DYNAMIC_CRC_TABLE |
1035 |
|
once(&made, make_crc_table); |
1036 |
|
#endif /* DYNAMIC_CRC_TABLE */ |
1037 |
0 |
return x2nmodp(len2, 3); |
1038 |
|
} |
1039 |
|
|
1040 |
|
/* ========================================================================= */ |
1041 |
0 |
uLong ZEXPORT crc32_combine_gen(z_off_t len2) { |
1042 |
0 |
return crc32_combine_gen64((z_off64_t)len2); |
1043 |
|
} |
1044 |
|
|
1045 |
|
/* ========================================================================= */ |
1046 |
0 |
uLong ZEXPORT crc32_combine_op(uLong crc1, uLong crc2, uLong op) { |
1047 |
0 |
return multmodp(op, crc1) ^ (crc2 & 0xffffffff); |
1048 |
|
} |