|  | varnish-cache/lib/libvgz/crc32.c | 
| 0 | 
   | 
  /* crc32.c -- compute the CRC-32 of a data stream  | 
| 1 | 
   | 
   * Copyright (C) 1995-2022 Mark Adler  | 
| 2 | 
   | 
   * For conditions of distribution and use, see copyright notice in zlib.h  | 
| 3 | 
   | 
   *  | 
| 4 | 
   | 
   * This interleaved implementation of a CRC makes use of pipelined multiple  | 
| 5 | 
   | 
   * arithmetic-logic units, commonly found in modern CPU cores. It is due to  | 
| 6 | 
   | 
   * Kadatch and Jenkins (2010). See doc/crc-doc.1.0.pdf in this distribution.  | 
| 7 | 
   | 
   */  | 
| 8 | 
   | 
   | 
| 9 | 
   | 
  /* @(#) $Id$ */  | 
| 10 | 
   | 
   | 
| 11 | 
   | 
  /*  | 
| 12 | 
   | 
    Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore  | 
| 13 | 
   | 
    protection on the static variables used to control the first-use generation  | 
| 14 | 
   | 
    of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should  | 
| 15 | 
   | 
    first call get_crc_table() to initialize the tables before allowing more than  | 
| 16 | 
   | 
    one thread to use crc32().  | 
| 17 | 
   | 
   | 
| 18 | 
   | 
    MAKECRCH can be #defined to write out crc32.h. A main() routine is also  | 
| 19 | 
   | 
    produced, so that this one source file can be compiled to an executable.  | 
| 20 | 
   | 
   */  | 
| 21 | 
   | 
   | 
| 22 | 
   | 
  #ifdef MAKECRCH  | 
| 23 | 
   | 
  #  include <stdio.h>  | 
| 24 | 
   | 
  #  ifndef DYNAMIC_CRC_TABLE  | 
| 25 | 
   | 
  #    define DYNAMIC_CRC_TABLE  | 
| 26 | 
   | 
  #  endif /* !DYNAMIC_CRC_TABLE */  | 
| 27 | 
   | 
  #endif /* MAKECRCH */  | 
| 28 | 
   | 
   | 
| 29 | 
   | 
  #include "zutil.h"      /* for Z_U4, Z_U8, z_crc_t, and FAR definitions */  | 
| 30 | 
   | 
   | 
| 31 | 
   | 
   /*  | 
| 32 | 
   | 
    A CRC of a message is computed on N braids of words in the message, where  | 
| 33 | 
   | 
    each word consists of W bytes (4 or 8). If N is 3, for example, then three  | 
| 34 | 
   | 
    running sparse CRCs are calculated respectively on each braid, at these  | 
| 35 | 
   | 
    indices in the array of words: 0, 3, 6, ..., 1, 4, 7, ..., and 2, 5, 8, ...  | 
| 36 | 
   | 
    This is done starting at a word boundary, and continues until as many blocks  | 
| 37 | 
   | 
    of N * W bytes as are available have been processed. The results are combined  | 
| 38 | 
   | 
    into a single CRC at the end. For this code, N must be in the range 1..6 and  | 
| 39 | 
   | 
    W must be 4 or 8. The upper limit on N can be increased if desired by adding  | 
| 40 | 
   | 
    more #if blocks, extending the patterns apparent in the code. In addition,  | 
| 41 | 
   | 
    crc32.h would need to be regenerated, if the maximum N value is increased.  | 
| 42 | 
   | 
   | 
| 43 | 
   | 
    N and W are chosen empirically by benchmarking the execution time on a given  | 
| 44 | 
   | 
    processor. The choices for N and W below were based on testing on Intel Kaby  | 
| 45 | 
   | 
    Lake i7, AMD Ryzen 7, ARM Cortex-A57, Sparc64-VII, PowerPC POWER9, and MIPS64  | 
| 46 | 
   | 
    Octeon II processors. The Intel, AMD, and ARM processors were all fastest  | 
| 47 | 
   | 
    with N=5, W=8. The Sparc, PowerPC, and MIPS64 were all fastest at N=5, W=4.  | 
| 48 | 
   | 
    They were all tested with either gcc or clang, all using the -O3 optimization  | 
| 49 | 
   | 
    level. Your mileage may vary.  | 
| 50 | 
   | 
   */  | 
| 51 | 
   | 
   | 
| 52 | 
   | 
  /* Define N */  | 
| 53 | 
   | 
  #ifdef Z_TESTN  | 
| 54 | 
   | 
  #  define N Z_TESTN  | 
| 55 | 
   | 
  #else  | 
| 56 | 
   | 
  #  define N 5  | 
| 57 | 
   | 
  #endif  | 
| 58 | 
   | 
  #if N < 1 || N > 6  | 
| 59 | 
   | 
  #  error N must be in 1..6  | 
| 60 | 
   | 
  #endif  | 
| 61 | 
   | 
   | 
| 62 | 
   | 
  /*  | 
| 63 | 
   | 
    z_crc_t must be at least 32 bits. z_word_t must be at least as long as  | 
| 64 | 
   | 
    z_crc_t. It is assumed here that z_word_t is either 32 bits or 64 bits, and  | 
| 65 | 
   | 
    that bytes are eight bits.  | 
| 66 | 
   | 
   */  | 
| 67 | 
   | 
   | 
| 68 | 
   | 
  /*  | 
| 69 | 
   | 
    Define W and the associated z_word_t type. If W is not defined, then a  | 
| 70 | 
   | 
    braided calculation is not used, and the associated tables and code are not  | 
| 71 | 
   | 
    compiled.  | 
| 72 | 
   | 
   */  | 
| 73 | 
   | 
  #ifdef Z_TESTW  | 
| 74 | 
   | 
  #  if Z_TESTW-1 != -1  | 
| 75 | 
   | 
  #    define W Z_TESTW  | 
| 76 | 
   | 
  #  endif  | 
| 77 | 
   | 
  #else  | 
| 78 | 
   | 
  #  ifdef MAKECRCH  | 
| 79 | 
   | 
  #    define W 8         /* required for MAKECRCH */  | 
| 80 | 
   | 
  #  else  | 
| 81 | 
   | 
  #    if defined(__x86_64__) || defined(__aarch64__)  | 
| 82 | 
   | 
  #      define W 8  | 
| 83 | 
   | 
  #    else  | 
| 84 | 
   | 
  #      define W 4  | 
| 85 | 
   | 
  #    endif  | 
| 86 | 
   | 
  #  endif  | 
| 87 | 
   | 
  #endif  | 
| 88 | 
   | 
  #ifdef W  | 
| 89 | 
   | 
  #  if W == 8 && defined(Z_U8)  | 
| 90 | 
   | 
       typedef Z_U8 z_word_t;  | 
| 91 | 
   | 
  #  elif defined(Z_U4)  | 
| 92 | 
   | 
  #    undef W  | 
| 93 | 
   | 
  #    define W 4  | 
| 94 | 
   | 
       typedef Z_U4 z_word_t;  | 
| 95 | 
   | 
  #  else  | 
| 96 | 
   | 
  #    undef W  | 
| 97 | 
   | 
  #  endif  | 
| 98 | 
   | 
  #endif  | 
| 99 | 
   | 
   | 
| 100 | 
   | 
  /* If available, use the ARM processor CRC32 instruction. */  | 
| 101 | 
   | 
  #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) && W == 8  | 
| 102 | 
   | 
  #  define ARMCRC32  | 
| 103 | 
   | 
  #endif  | 
| 104 | 
   | 
   | 
| 105 | 
   | 
  #if defined(W) && (!defined(ARMCRC32) || defined(DYNAMIC_CRC_TABLE))  | 
| 106 | 
   | 
  /*  | 
| 107 | 
   | 
    Swap the bytes in a z_word_t to convert between little and big endian. Any  | 
| 108 | 
   | 
    self-respecting compiler will optimize this to a single machine byte-swap  | 
| 109 | 
   | 
    instruction, if one is available. This assumes that word_t is either 32 bits  | 
| 110 | 
   | 
    or 64 bits.  | 
| 111 | 
   | 
   */  | 
| 112 | 
  0 | 
  local z_word_t byte_swap (z_word_t word) { | 
| 113 | 
   | 
  #  if W == 8  | 
| 114 | 
  0 | 
      return  | 
| 115 | 
  0 | 
          (word & 0xff00000000000000) >> 56 |  | 
| 116 | 
  0 | 
          (word & 0xff000000000000) >> 40 |  | 
| 117 | 
  0 | 
          (word & 0xff0000000000) >> 24 |  | 
| 118 | 
  0 | 
          (word & 0xff00000000) >> 8 |  | 
| 119 | 
  0 | 
          (word & 0xff000000) << 8 |  | 
| 120 | 
  0 | 
          (word & 0xff0000) << 24 |  | 
| 121 | 
  0 | 
          (word & 0xff00) << 40 |  | 
| 122 | 
  0 | 
          (word & 0xff) << 56;  | 
| 123 | 
   | 
  #  else   /* W == 4 */  | 
| 124 | 
   | 
      return  | 
| 125 | 
   | 
          (word & 0xff000000) >> 24 |  | 
| 126 | 
   | 
          (word & 0xff0000) >> 8 |  | 
| 127 | 
   | 
          (word & 0xff00) << 8 |  | 
| 128 | 
   | 
          (word & 0xff) << 24;  | 
| 129 | 
   | 
  #  endif  | 
| 130 | 
   | 
  }  | 
| 131 | 
   | 
  #endif  | 
| 132 | 
   | 
   | 
| 133 | 
   | 
  #ifdef DYNAMIC_CRC_TABLE  | 
| 134 | 
   | 
  /* =========================================================================  | 
| 135 | 
   | 
   * Table of powers of x for combining CRC-32s, filled in by make_crc_table()  | 
| 136 | 
   | 
   * below.  | 
| 137 | 
   | 
   */  | 
| 138 | 
   | 
     local z_crc_t FAR x2n_table[32];  | 
| 139 | 
   | 
  #else  | 
| 140 | 
   | 
  /* =========================================================================  | 
| 141 | 
   | 
   * Tables for byte-wise and braided CRC-32 calculations, and a table of powers  | 
| 142 | 
   | 
   * of x for combining CRC-32s, all made by make_crc_table().  | 
| 143 | 
   | 
   */  | 
| 144 | 
   | 
  #  include "crc32.h"  | 
| 145 | 
   | 
  #endif  | 
| 146 | 
   | 
   | 
| 147 | 
   | 
  /* CRC polynomial. */  | 
| 148 | 
   | 
  #define POLY 0xedb88320         /* p(x) reflected, with x^32 implied */  | 
| 149 | 
   | 
   | 
| 150 | 
   | 
  /*  | 
| 151 | 
   | 
    Return a(x) multiplied by b(x) modulo p(x), where p(x) is the CRC polynomial,  | 
| 152 | 
   | 
    reflected. For speed, this requires that a not be zero.  | 
| 153 | 
   | 
   */  | 
| 154 | 
  65193 | 
  local z_crc_t multmodp(z_crc_t a, z_crc_t b) { | 
| 155 | 
   | 
      z_crc_t m, p;  | 
| 156 | 
   | 
   | 
| 157 | 
  65193 | 
      m = (z_crc_t)1 << 31;  | 
| 158 | 
  65193 | 
      p = 0;  | 
| 159 | 
  1652698 | 
      for (;;) { | 
| 160 | 
  1652698 | 
          if (a & m) { | 
| 161 | 
  670313 | 
              p ^= b;  | 
| 162 | 
  670313 | 
              if ((a & (m - 1)) == 0)  | 
| 163 | 
  65193 | 
                  break;  | 
| 164 | 
  605120 | 
          }  | 
| 165 | 
  1587505 | 
          m >>= 1;  | 
| 166 | 
  1587505 | 
          b = b & 1 ? (b >> 1) ^ POLY : b >> 1;  | 
| 167 | 
   | 
      }  | 
| 168 | 
  65193 | 
      return p;  | 
| 169 | 
   | 
  }  | 
| 170 | 
   | 
   | 
| 171 | 
   | 
  /*  | 
| 172 | 
   | 
    Return x^(n * 2^k) modulo p(x). Requires that x2n_table[] has been  | 
| 173 | 
   | 
    initialized.  | 
| 174 | 
   | 
   */  | 
| 175 | 
  15955 | 
  local z_crc_t x2nmodp(z_off64_t n, unsigned k) { | 
| 176 | 
   | 
      z_crc_t p;  | 
| 177 | 
   | 
   | 
| 178 | 
  15955 | 
      p = (z_crc_t)1 << 31;           /* x^0 == 1 */  | 
| 179 | 
  154080 | 
      while (n) { | 
| 180 | 
  138125 | 
          if (n & 1)  | 
| 181 | 
  49239 | 
              p = multmodp(x2n_table[k & 31], p);  | 
| 182 | 
  138125 | 
          n >>= 1;  | 
| 183 | 
  138125 | 
          k++;  | 
| 184 | 
   | 
      }  | 
| 185 | 
  15955 | 
      return p;  | 
| 186 | 
   | 
  }  | 
| 187 | 
   | 
   | 
| 188 | 
   | 
  #ifdef DYNAMIC_CRC_TABLE  | 
| 189 | 
   | 
  /* =========================================================================  | 
| 190 | 
   | 
   * Build the tables for byte-wise and braided CRC-32 calculations, and a table  | 
| 191 | 
   | 
   * of powers of x for combining CRC-32s.  | 
| 192 | 
   | 
   */  | 
| 193 | 
   | 
  local z_crc_t FAR crc_table[256];  | 
| 194 | 
   | 
  #ifdef W  | 
| 195 | 
   | 
     local z_word_t FAR crc_big_table[256];  | 
| 196 | 
   | 
     local z_crc_t FAR crc_braid_table[W][256];  | 
| 197 | 
   | 
     local z_word_t FAR crc_braid_big_table[W][256];  | 
| 198 | 
   | 
     local void braid (z_crc_t [][256], z_word_t [][256], int, int);  | 
| 199 | 
   | 
  #endif  | 
| 200 | 
   | 
  #ifdef MAKECRCH  | 
| 201 | 
   | 
     local void write_table (FILE *, const z_crc_t FAR *, int);  | 
| 202 | 
   | 
     local void write_table32hi (FILE *, const z_word_t FAR *, int);  | 
| 203 | 
   | 
     local void write_table64 (FILE *, const z_word_t FAR *, int);  | 
| 204 | 
   | 
  #endif /* MAKECRCH */  | 
| 205 | 
   | 
   | 
| 206 | 
   | 
  /*  | 
| 207 | 
   | 
    Define a once() function depending on the availability of atomics. If this is  | 
| 208 | 
   | 
    compiled with DYNAMIC_CRC_TABLE defined, and if CRCs will be computed in  | 
| 209 | 
   | 
    multiple threads, and if atomics are not available, then get_crc_table() must  | 
| 210 | 
   | 
    be called to initialize the tables and must return before any threads are  | 
| 211 | 
   | 
    allowed to compute or combine CRCs.  | 
| 212 | 
   | 
   */  | 
| 213 | 
   | 
   | 
| 214 | 
   | 
  /* Definition of once functionality. */  | 
| 215 | 
   | 
  typedef struct once_s once_t;  | 
| 216 | 
   | 
   | 
| 217 | 
   | 
  /* Check for the availability of atomics. */  | 
| 218 | 
   | 
  #if defined(__STDC__) && __STDC_VERSION__ >= 201112L && \  | 
| 219 | 
   | 
      !defined(__STDC_NO_ATOMICS__)  | 
| 220 | 
   | 
   | 
| 221 | 
   | 
  #include <stdatomic.h>  | 
| 222 | 
   | 
   | 
| 223 | 
   | 
  /* Structure for once(), which must be initialized with ONCE_INIT. */  | 
| 224 | 
   | 
  struct once_s { | 
| 225 | 
   | 
      atomic_flag begun;  | 
| 226 | 
   | 
      atomic_int done;  | 
| 227 | 
   | 
  };  | 
| 228 | 
   | 
  #define ONCE_INIT {ATOMIC_FLAG_INIT, 0} | 
| 229 | 
   | 
   | 
| 230 | 
   | 
  /*  | 
| 231 | 
   | 
    Run the provided init() function exactly once, even if multiple threads  | 
| 232 | 
   | 
    invoke once() at the same time. The state must be a once_t initialized with  | 
| 233 | 
   | 
    ONCE_INIT.  | 
| 234 | 
   | 
   */  | 
| 235 | 
   | 
  local void once(once_t *state, void (*init)(void)) { | 
| 236 | 
   | 
      if (!atomic_load(&state->done)) { | 
| 237 | 
   | 
          if (atomic_flag_test_and_set(&state->begun))  | 
| 238 | 
   | 
              while (!atomic_load(&state->done))  | 
| 239 | 
   | 
                  ;  | 
| 240 | 
   | 
          else { | 
| 241 | 
   | 
              init();  | 
| 242 | 
   | 
              atomic_store(&state->done, 1);  | 
| 243 | 
   | 
          }  | 
| 244 | 
   | 
      }  | 
| 245 | 
   | 
  }  | 
| 246 | 
   | 
   | 
| 247 | 
   | 
  #else   /* no atomics */  | 
| 248 | 
   | 
   | 
| 249 | 
   | 
  /* Structure for once(), which must be initialized with ONCE_INIT. */  | 
| 250 | 
   | 
  struct once_s { | 
| 251 | 
   | 
      volatile int begun;  | 
| 252 | 
   | 
      volatile int done;  | 
| 253 | 
   | 
  };  | 
| 254 | 
   | 
  #define ONCE_INIT {0, 0} | 
| 255 | 
   | 
   | 
| 256 | 
   | 
  /* Test and set. Alas, not atomic, but tries to minimize the period of  | 
| 257 | 
   | 
     vulnerability. */  | 
| 258 | 
   | 
  local int test_and_set (int volatile *flag) { | 
| 259 | 
   | 
      int was;  | 
| 260 | 
   | 
   | 
| 261 | 
   | 
      was = *flag;  | 
| 262 | 
   | 
      *flag = 1;  | 
| 263 | 
   | 
      return was;  | 
| 264 | 
   | 
  }  | 
| 265 | 
   | 
   | 
| 266 | 
   | 
  /* Run the provided init() function once. This is not thread-safe. */  | 
| 267 | 
   | 
  local void once(once_t *state, void (*init)(void)) { | 
| 268 | 
   | 
      if (!state->done) { | 
| 269 | 
   | 
          if (test_and_set(&state->begun))  | 
| 270 | 
   | 
              while (!state->done)  | 
| 271 | 
   | 
                  ;  | 
| 272 | 
   | 
          else { | 
| 273 | 
   | 
              init();  | 
| 274 | 
   | 
              state->done = 1;  | 
| 275 | 
   | 
          }  | 
| 276 | 
   | 
      }  | 
| 277 | 
   | 
  }  | 
| 278 | 
   | 
   | 
| 279 | 
   | 
  #endif  | 
| 280 | 
   | 
   | 
| 281 | 
   | 
  /* State for once(). */  | 
| 282 | 
   | 
  local once_t made = ONCE_INIT;  | 
| 283 | 
   | 
   | 
| 284 | 
   | 
  /*  | 
| 285 | 
   | 
    Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:  | 
| 286 | 
   | 
    x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.  | 
| 287 | 
   | 
   | 
| 288 | 
   | 
    Polynomials over GF(2) are represented in binary, one bit per coefficient,  | 
| 289 | 
   | 
    with the lowest powers in the most significant bit. Then adding polynomials  | 
| 290 | 
   | 
    is just exclusive-or, and multiplying a polynomial by x is a right shift by  | 
| 291 | 
   | 
    one. If we call the above polynomial p, and represent a byte as the  | 
| 292 | 
   | 
    polynomial q, also with the lowest power in the most significant bit (so the  | 
| 293 | 
   | 
    byte 0xb1 is the polynomial x^7+x^3+x^2+1), then the CRC is (q*x^32) mod p,  | 
| 294 | 
   | 
    where a mod b means the remainder after dividing a by b.  | 
| 295 | 
   | 
   | 
| 296 | 
   | 
    This calculation is done using the shift-register method of multiplying and  | 
| 297 | 
   | 
    taking the remainder. The register is initialized to zero, and for each  | 
| 298 | 
   | 
    incoming bit, x^32 is added mod p to the register if the bit is a one (where  | 
| 299 | 
   | 
    x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by x  | 
| 300 | 
   | 
    (which is shifting right by one and adding x^32 mod p if the bit shifted out  | 
| 301 | 
   | 
    is a one). We start with the highest power (least significant bit) of q and  | 
| 302 | 
   | 
    repeat for all eight bits of q.  | 
| 303 | 
   | 
   | 
| 304 | 
   | 
    The table is simply the CRC of all possible eight bit values. This is all the  | 
| 305 | 
   | 
    information needed to generate CRCs on data a byte at a time for all  | 
| 306 | 
   | 
    combinations of CRC register values and incoming bytes.  | 
| 307 | 
   | 
   */  | 
| 308 | 
   | 
   | 
| 309 | 
   | 
  local void make_crc_table(void) { | 
| 310 | 
   | 
      unsigned i, j, n;  | 
| 311 | 
   | 
      z_crc_t p;  | 
| 312 | 
   | 
   | 
| 313 | 
   | 
      /* initialize the CRC of bytes tables */  | 
| 314 | 
   | 
      for (i = 0; i < 256; i++) { | 
| 315 | 
   | 
          p = i;  | 
| 316 | 
   | 
          for (j = 0; j < 8; j++)  | 
| 317 | 
   | 
              p = p & 1 ? (p >> 1) ^ POLY : p >> 1;  | 
| 318 | 
   | 
          crc_table[i] = p;  | 
| 319 | 
   | 
  #ifdef W  | 
| 320 | 
   | 
          crc_big_table[i] = byte_swap(p);  | 
| 321 | 
   | 
  #endif  | 
| 322 | 
   | 
      }  | 
| 323 | 
   | 
   | 
| 324 | 
   | 
      /* initialize the x^2^n mod p(x) table */  | 
| 325 | 
   | 
      p = (z_crc_t)1 << 30;         /* x^1 */  | 
| 326 | 
   | 
      x2n_table[0] = p;  | 
| 327 | 
   | 
      for (n = 1; n < 32; n++)  | 
| 328 | 
   | 
          x2n_table[n] = p = multmodp(p, p);  | 
| 329 | 
   | 
   | 
| 330 | 
   | 
  #ifdef W  | 
| 331 | 
   | 
      /* initialize the braiding tables -- needs x2n_table[] */  | 
| 332 | 
   | 
      braid(crc_braid_table, crc_braid_big_table, N, W);  | 
| 333 | 
   | 
  #endif  | 
| 334 | 
   | 
   | 
| 335 | 
   | 
  #ifdef MAKECRCH  | 
| 336 | 
   | 
      { | 
| 337 | 
   | 
          /*  | 
| 338 | 
   | 
            The crc32.h header file contains tables for both 32-bit and 64-bit  | 
| 339 | 
   | 
            z_word_t's, and so requires a 64-bit type be available. In that case,  | 
| 340 | 
   | 
            z_word_t must be defined to be 64-bits. This code then also generates  | 
| 341 | 
   | 
            and writes out the tables for the case that z_word_t is 32 bits.  | 
| 342 | 
   | 
           */  | 
| 343 | 
   | 
  #if !defined(W) || W != 8  | 
| 344 | 
   | 
  #  error Need a 64-bit integer type in order to generate crc32.h.  | 
| 345 | 
   | 
  #endif  | 
| 346 | 
   | 
          FILE *out;  | 
| 347 | 
   | 
          int k, n;  | 
| 348 | 
   | 
          z_crc_t ltl[8][256];  | 
| 349 | 
   | 
          z_word_t big[8][256];  | 
| 350 | 
   | 
   | 
| 351 | 
   | 
          out = fopen("crc32.h", "w"); | 
| 352 | 
   | 
          if (out == NULL) return;  | 
| 353 | 
   | 
   | 
| 354 | 
   | 
          /* write out little-endian CRC table to crc32.h */  | 
| 355 | 
   | 
          fprintf(out,  | 
| 356 | 
   | 
              "/* crc32.h -- tables for rapid CRC calculation\n"  | 
| 357 | 
   | 
              " * Generated automatically by crc32.c\n */\n"  | 
| 358 | 
   | 
              "\n"  | 
| 359 | 
   | 
              "local const z_crc_t FAR crc_table[] = {\n" | 
| 360 | 
   | 
              "    ");  | 
| 361 | 
   | 
          write_table(out, crc_table, 256);  | 
| 362 | 
   | 
          fprintf(out,  | 
| 363 | 
   | 
              "};\n");  | 
| 364 | 
   | 
   | 
| 365 | 
   | 
          /* write out big-endian CRC table for 64-bit z_word_t to crc32.h */  | 
| 366 | 
   | 
          fprintf(out,  | 
| 367 | 
   | 
              "\n"  | 
| 368 | 
   | 
              "#ifdef W\n"  | 
| 369 | 
   | 
              "\n"  | 
| 370 | 
   | 
              "#if W == 8\n"  | 
| 371 | 
   | 
              "\n"  | 
| 372 | 
   | 
              "local const z_word_t FAR crc_big_table[] = {\n" | 
| 373 | 
   | 
              "    ");  | 
| 374 | 
   | 
          write_table64(out, crc_big_table, 256);  | 
| 375 | 
   | 
          fprintf(out,  | 
| 376 | 
   | 
              "};\n");  | 
| 377 | 
   | 
   | 
| 378 | 
   | 
          /* write out big-endian CRC table for 32-bit z_word_t to crc32.h */  | 
| 379 | 
   | 
          fprintf(out,  | 
| 380 | 
   | 
              "\n"  | 
| 381 | 
   | 
              "#else /* W == 4 */\n"  | 
| 382 | 
   | 
              "\n"  | 
| 383 | 
   | 
              "local const z_word_t FAR crc_big_table[] = {\n" | 
| 384 | 
   | 
              "    ");  | 
| 385 | 
   | 
          write_table32hi(out, crc_big_table, 256);  | 
| 386 | 
   | 
          fprintf(out,  | 
| 387 | 
   | 
              "};\n"  | 
| 388 | 
   | 
              "\n"  | 
| 389 | 
   | 
              "#endif\n");  | 
| 390 | 
   | 
   | 
| 391 | 
   | 
          /* write out braid tables for each value of N */  | 
| 392 | 
   | 
          for (n = 1; n <= 6; n++) { | 
| 393 | 
   | 
              fprintf(out,  | 
| 394 | 
   | 
              "\n"  | 
| 395 | 
   | 
              "#if N == %d\n", n);  | 
| 396 | 
   | 
   | 
| 397 | 
   | 
              /* compute braid tables for this N and 64-bit word_t */  | 
| 398 | 
   | 
              braid(ltl, big, n, 8);  | 
| 399 | 
   | 
   | 
| 400 | 
   | 
              /* write out braid tables for 64-bit z_word_t to crc32.h */  | 
| 401 | 
   | 
              fprintf(out,  | 
| 402 | 
   | 
              "\n"  | 
| 403 | 
   | 
              "#if W == 8\n"  | 
| 404 | 
   | 
              "\n"  | 
| 405 | 
   | 
              "local const z_crc_t FAR crc_braid_table[][256] = {\n"); | 
| 406 | 
   | 
              for (k = 0; k < 8; k++) { | 
| 407 | 
   | 
                  fprintf(out, "   {"); | 
| 408 | 
   | 
                  write_table(out, ltl[k], 256);  | 
| 409 | 
   | 
                  fprintf(out, "}%s", k < 7 ? ",\n" : "");  | 
| 410 | 
   | 
              }  | 
| 411 | 
   | 
              fprintf(out,  | 
| 412 | 
   | 
              "};\n"  | 
| 413 | 
   | 
              "\n"  | 
| 414 | 
   | 
              "local const z_word_t FAR crc_braid_big_table[][256] = {\n"); | 
| 415 | 
   | 
              for (k = 0; k < 8; k++) { | 
| 416 | 
   | 
                  fprintf(out, "   {"); | 
| 417 | 
   | 
                  write_table64(out, big[k], 256);  | 
| 418 | 
   | 
                  fprintf(out, "}%s", k < 7 ? ",\n" : "");  | 
| 419 | 
   | 
              }  | 
| 420 | 
   | 
              fprintf(out,  | 
| 421 | 
   | 
              "};\n");  | 
| 422 | 
   | 
   | 
| 423 | 
   | 
              /* compute braid tables for this N and 32-bit word_t */  | 
| 424 | 
   | 
              braid(ltl, big, n, 4);  | 
| 425 | 
   | 
   | 
| 426 | 
   | 
              /* write out braid tables for 32-bit z_word_t to crc32.h */  | 
| 427 | 
   | 
              fprintf(out,  | 
| 428 | 
   | 
              "\n"  | 
| 429 | 
   | 
              "#else /* W == 4 */\n"  | 
| 430 | 
   | 
              "\n"  | 
| 431 | 
   | 
              "local const z_crc_t FAR crc_braid_table[][256] = {\n"); | 
| 432 | 
   | 
              for (k = 0; k < 4; k++) { | 
| 433 | 
   | 
                  fprintf(out, "   {"); | 
| 434 | 
   | 
                  write_table(out, ltl[k], 256);  | 
| 435 | 
   | 
                  fprintf(out, "}%s", k < 3 ? ",\n" : "");  | 
| 436 | 
   | 
              }  | 
| 437 | 
   | 
              fprintf(out,  | 
| 438 | 
   | 
              "};\n"  | 
| 439 | 
   | 
              "\n"  | 
| 440 | 
   | 
              "local const z_word_t FAR crc_braid_big_table[][256] = {\n"); | 
| 441 | 
   | 
              for (k = 0; k < 4; k++) { | 
| 442 | 
   | 
                  fprintf(out, "   {"); | 
| 443 | 
   | 
                  write_table32hi(out, big[k], 256);  | 
| 444 | 
   | 
                  fprintf(out, "}%s", k < 3 ? ",\n" : "");  | 
| 445 | 
   | 
              }  | 
| 446 | 
   | 
              fprintf(out,  | 
| 447 | 
   | 
              "};\n"  | 
| 448 | 
   | 
              "\n"  | 
| 449 | 
   | 
              "#endif\n"  | 
| 450 | 
   | 
              "\n"  | 
| 451 | 
   | 
              "#endif\n");  | 
| 452 | 
   | 
          }  | 
| 453 | 
   | 
          fprintf(out,  | 
| 454 | 
   | 
              "\n"  | 
| 455 | 
   | 
              "#endif\n");  | 
| 456 | 
   | 
   | 
| 457 | 
   | 
          /* write out zeros operator table to crc32.h */  | 
| 458 | 
   | 
          fprintf(out,  | 
| 459 | 
   | 
              "\n"  | 
| 460 | 
   | 
              "local const z_crc_t FAR x2n_table[] = {\n" | 
| 461 | 
   | 
              "    ");  | 
| 462 | 
   | 
          write_table(out, x2n_table, 32);  | 
| 463 | 
   | 
          fprintf(out,  | 
| 464 | 
   | 
              "};\n");  | 
| 465 | 
   | 
          fclose(out);  | 
| 466 | 
   | 
      }  | 
| 467 | 
   | 
  #endif /* MAKECRCH */  | 
| 468 | 
   | 
  }  | 
| 469 | 
   | 
   | 
| 470 | 
   | 
  #ifdef MAKECRCH  | 
| 471 | 
   | 
   | 
| 472 | 
   | 
  /*  | 
| 473 | 
   | 
     Write the 32-bit values in table[0..k-1] to out, five per line in  | 
| 474 | 
   | 
     hexadecimal separated by commas.  | 
| 475 | 
   | 
   */  | 
| 476 | 
   | 
  local void write_table(FILE *out, const z_crc_t FAR *table, int k) { | 
| 477 | 
   | 
      int n;  | 
| 478 | 
   | 
   | 
| 479 | 
   | 
      for (n = 0; n < k; n++)  | 
| 480 | 
   | 
          fprintf(out, "%s0x%08lx%s", n == 0 || n % 5 ? "" : "    ",  | 
| 481 | 
   | 
                  (unsigned long)(table[n]),  | 
| 482 | 
   | 
                  n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", "));  | 
| 483 | 
   | 
  }  | 
| 484 | 
   | 
   | 
| 485 | 
   | 
  /*  | 
| 486 | 
   | 
     Write the high 32-bits of each value in table[0..k-1] to out, five per line  | 
| 487 | 
   | 
     in hexadecimal separated by commas.  | 
| 488 | 
   | 
   */  | 
| 489 | 
   | 
  local void write_table32hi(FILE *out, const z_word_t FAR *table, int k) { | 
| 490 | 
   | 
      int n;  | 
| 491 | 
   | 
   | 
| 492 | 
   | 
      for (n = 0; n < k; n++)  | 
| 493 | 
   | 
          fprintf(out, "%s0x%08lx%s", n == 0 || n % 5 ? "" : "    ",  | 
| 494 | 
   | 
                  (unsigned long)(table[n] >> 32),  | 
| 495 | 
   | 
                  n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", "));  | 
| 496 | 
   | 
  }  | 
| 497 | 
   | 
   | 
| 498 | 
   | 
  /*  | 
| 499 | 
   | 
    Write the 64-bit values in table[0..k-1] to out, three per line in  | 
| 500 | 
   | 
    hexadecimal separated by commas. This assumes that if there is a 64-bit  | 
| 501 | 
   | 
    type, then there is also a long long integer type, and it is at least 64  | 
| 502 | 
   | 
    bits. If not, then the type cast and format string can be adjusted  | 
| 503 | 
   | 
    accordingly.  | 
| 504 | 
   | 
   */  | 
| 505 | 
   | 
  local void write_table64(FILE *out, const z_word_t FAR *table, int k) { | 
| 506 | 
   | 
      int n;  | 
| 507 | 
   | 
   | 
| 508 | 
   | 
      for (n = 0; n < k; n++)  | 
| 509 | 
   | 
          fprintf(out, "%s0x%016llx%s", n == 0 || n % 3 ? "" : "    ",  | 
| 510 | 
   | 
                  (unsigned long long)(table[n]),  | 
| 511 | 
   | 
                  n == k - 1 ? "" : (n % 3 == 2 ? ",\n" : ", "));  | 
| 512 | 
   | 
  }  | 
| 513 | 
   | 
   | 
| 514 | 
   | 
  /* Actually do the deed. */  | 
| 515 | 
   | 
  int main(void) { | 
| 516 | 
   | 
      make_crc_table();  | 
| 517 | 
   | 
      return 0;  | 
| 518 | 
   | 
  }  | 
| 519 | 
   | 
   | 
| 520 | 
   | 
  #endif /* MAKECRCH */  | 
| 521 | 
   | 
   | 
| 522 | 
   | 
  #ifdef W  | 
| 523 | 
   | 
  /*  | 
| 524 | 
   | 
    Generate the little and big-endian braid tables for the given n and z_word_t  | 
| 525 | 
   | 
    size w. Each array must have room for w blocks of 256 elements.  | 
| 526 | 
   | 
   */  | 
| 527 | 
   | 
  local void braid(z_crc_t ltl[][256], z_word_t big[][256], int n, int w) { | 
| 528 | 
   | 
      int k;  | 
| 529 | 
   | 
      z_crc_t i, p, q;  | 
| 530 | 
   | 
      for (k = 0; k < w; k++) { | 
| 531 | 
   | 
          p = x2nmodp((n * w + 3 - k) << 3, 0);  | 
| 532 | 
   | 
          ltl[k][0] = 0;  | 
| 533 | 
   | 
          big[w - 1 - k][0] = 0;  | 
| 534 | 
   | 
          for (i = 1; i < 256; i++) { | 
| 535 | 
   | 
              ltl[k][i] = q = multmodp(i << 24, p);  | 
| 536 | 
   | 
              big[w - 1 - k][i] = byte_swap(q);  | 
| 537 | 
   | 
          }  | 
| 538 | 
   | 
      }  | 
| 539 | 
   | 
  }  | 
| 540 | 
   | 
  #endif  | 
| 541 | 
   | 
   | 
| 542 | 
   | 
  #endif /* DYNAMIC_CRC_TABLE */  | 
| 543 | 
   | 
   | 
| 544 | 
   | 
  /* =========================================================================  | 
| 545 | 
   | 
   * This function can be used by asm versions of crc32(), and to force the  | 
| 546 | 
   | 
   * generation of the CRC tables in a threaded application.  | 
| 547 | 
   | 
   */  | 
| 548 | 
  0 | 
  const z_crc_t FAR * ZEXPORT get_crc_table(void) { | 
| 549 | 
   | 
  #ifdef DYNAMIC_CRC_TABLE  | 
| 550 | 
   | 
      once(&made, make_crc_table);  | 
| 551 | 
   | 
  #endif /* DYNAMIC_CRC_TABLE */  | 
| 552 | 
  0 | 
      return (const z_crc_t FAR *)crc_table;  | 
| 553 | 
   | 
  }  | 
| 554 | 
   | 
   | 
| 555 | 
   | 
  /* =========================================================================  | 
| 556 | 
   | 
   * Use ARM machine instructions if available. This will compute the CRC about  | 
| 557 | 
   | 
   * ten times faster than the braided calculation. This code does not check for  | 
| 558 | 
   | 
   * the presence of the CRC instruction at run time. __ARM_FEATURE_CRC32 will  | 
| 559 | 
   | 
   * only be defined if the compilation specifies an ARM processor architecture  | 
| 560 | 
   | 
   * that has the instructions. For example, compiling with -march=armv8.1-a or  | 
| 561 | 
   | 
   * -march=armv8-a+crc, or -march=native if the compile machine has the crc32  | 
| 562 | 
   | 
   * instructions.  | 
| 563 | 
   | 
   */  | 
| 564 | 
   | 
  #ifdef ARMCRC32  | 
| 565 | 
   | 
   | 
| 566 | 
   | 
  /*  | 
| 567 | 
   | 
     Constants empirically determined to maximize speed. These values are from  | 
| 568 | 
   | 
     measurements on a Cortex-A57. Your mileage may vary.  | 
| 569 | 
   | 
   */  | 
| 570 | 
   | 
  #define Z_BATCH 3990                /* number of words in a batch */  | 
| 571 | 
   | 
  #define Z_BATCH_ZEROS 0xa10d3d0c    /* computed from Z_BATCH = 3990 */  | 
| 572 | 
   | 
  #define Z_BATCH_MIN 800             /* fewest words in a final batch */  | 
| 573 | 
   | 
   | 
| 574 | 
   | 
  unsigned long ZEXPORT crc32_z(unsigned long crc, const unsigned char FAR *buf,  | 
| 575 | 
   | 
                                z_size_t len) { | 
| 576 | 
   | 
      z_crc_t val;  | 
| 577 | 
   | 
      z_word_t crc1, crc2;  | 
| 578 | 
   | 
      const z_word_t *word;  | 
| 579 | 
   | 
      z_word_t val0, val1, val2;  | 
| 580 | 
   | 
      z_size_t last, last2, i;  | 
| 581 | 
   | 
      z_size_t num;  | 
| 582 | 
   | 
   | 
| 583 | 
   | 
      /* Return initial CRC, if requested. */  | 
| 584 | 
   | 
      if (buf == Z_NULL) return 0;  | 
| 585 | 
   | 
   | 
| 586 | 
   | 
  #ifdef DYNAMIC_CRC_TABLE  | 
| 587 | 
   | 
      once(&made, make_crc_table);  | 
| 588 | 
   | 
  #endif /* DYNAMIC_CRC_TABLE */  | 
| 589 | 
   | 
   | 
| 590 | 
   | 
      /* Pre-condition the CRC */  | 
| 591 | 
   | 
      crc = (~crc) & 0xffffffff;  | 
| 592 | 
   | 
   | 
| 593 | 
   | 
      /* Compute the CRC up to a word boundary. */  | 
| 594 | 
   | 
      while (len && ((z_size_t)buf & 7) != 0) { | 
| 595 | 
   | 
          len--;  | 
| 596 | 
   | 
          val = *buf++;  | 
| 597 | 
   | 
          __asm__ volatile("crc32b %w0, %w0, %w1" : "+r"(crc) : "r"(val)); | 
| 598 | 
   | 
      }  | 
| 599 | 
   | 
   | 
| 600 | 
   | 
      /* Prepare to compute the CRC on full 64-bit words word[0..num-1]. */  | 
| 601 | 
   | 
      word = (z_word_t const *)(intptr_t)buf;  | 
| 602 | 
   | 
      num = len >> 3;  | 
| 603 | 
   | 
      len &= 7;  | 
| 604 | 
   | 
   | 
| 605 | 
   | 
      /* Do three interleaved CRCs to realize the throughput of one crc32x  | 
| 606 | 
   | 
         instruction per cycle. Each CRC is calculated on Z_BATCH words. The  | 
| 607 | 
   | 
         three CRCs are combined into a single CRC after each set of batches. */  | 
| 608 | 
   | 
      while (num >= 3 * Z_BATCH) { | 
| 609 | 
   | 
          crc1 = 0;  | 
| 610 | 
   | 
          crc2 = 0;  | 
| 611 | 
   | 
          for (i = 0; i < Z_BATCH; i++) { | 
| 612 | 
   | 
              val0 = word[i];  | 
| 613 | 
   | 
              val1 = word[i + Z_BATCH];  | 
| 614 | 
   | 
              val2 = word[i + 2 * Z_BATCH];  | 
| 615 | 
   | 
              __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0)); | 
| 616 | 
   | 
              __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc1) : "r"(val1)); | 
| 617 | 
   | 
              __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc2) : "r"(val2)); | 
| 618 | 
   | 
          }  | 
| 619 | 
   | 
          word += 3 * Z_BATCH;  | 
| 620 | 
   | 
          num -= 3 * Z_BATCH;  | 
| 621 | 
   | 
          crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc1;  | 
| 622 | 
   | 
          crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc2;  | 
| 623 | 
   | 
      }  | 
| 624 | 
   | 
   | 
| 625 | 
   | 
      /* Do one last smaller batch with the remaining words, if there are enough  | 
| 626 | 
   | 
         to pay for the combination of CRCs. */  | 
| 627 | 
   | 
      last = num / 3;  | 
| 628 | 
   | 
      if (last >= Z_BATCH_MIN) { | 
| 629 | 
   | 
          last2 = last << 1;  | 
| 630 | 
   | 
          crc1 = 0;  | 
| 631 | 
   | 
          crc2 = 0;  | 
| 632 | 
   | 
          for (i = 0; i < last; i++) { | 
| 633 | 
   | 
              val0 = word[i];  | 
| 634 | 
   | 
              val1 = word[i + last];  | 
| 635 | 
   | 
              val2 = word[i + last2];  | 
| 636 | 
   | 
              __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0)); | 
| 637 | 
   | 
              __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc1) : "r"(val1)); | 
| 638 | 
   | 
              __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc2) : "r"(val2)); | 
| 639 | 
   | 
          }  | 
| 640 | 
   | 
          word += 3 * last;  | 
| 641 | 
   | 
          num -= 3 * last;  | 
| 642 | 
   | 
          val = x2nmodp(last, 6);  | 
| 643 | 
   | 
          crc = multmodp(val, crc) ^ crc1;  | 
| 644 | 
   | 
          crc = multmodp(val, crc) ^ crc2;  | 
| 645 | 
   | 
      }  | 
| 646 | 
   | 
   | 
| 647 | 
   | 
      /* Compute the CRC on any remaining words. */  | 
| 648 | 
   | 
      for (i = 0; i < num; i++) { | 
| 649 | 
   | 
          val0 = word[i];  | 
| 650 | 
   | 
          __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0)); | 
| 651 | 
   | 
      }  | 
| 652 | 
   | 
      word += num;  | 
| 653 | 
   | 
   | 
| 654 | 
   | 
      /* Complete the CRC on any remaining bytes. */  | 
| 655 | 
   | 
      buf = (const unsigned char FAR *)word;  | 
| 656 | 
   | 
      while (len) { | 
| 657 | 
   | 
          len--;  | 
| 658 | 
   | 
          val = *buf++;  | 
| 659 | 
   | 
          __asm__ volatile("crc32b %w0, %w0, %w1" : "+r"(crc) : "r"(val)); | 
| 660 | 
   | 
      }  | 
| 661 | 
   | 
   | 
| 662 | 
   | 
      /* Return the CRC, post-conditioned. */  | 
| 663 | 
   | 
      return crc ^ 0xffffffff;  | 
| 664 | 
   | 
  }  | 
| 665 | 
   | 
   | 
| 666 | 
   | 
  #else  | 
| 667 | 
   | 
   | 
| 668 | 
   | 
  #ifdef W  | 
| 669 | 
   | 
   | 
| 670 | 
   | 
  /*  | 
| 671 | 
   | 
    Return the CRC of the W bytes in the word_t data, taking the  | 
| 672 | 
   | 
    least-significant byte of the word as the first byte of data, without any pre  | 
| 673 | 
   | 
    or post conditioning. This is used to combine the CRCs of each braid.  | 
| 674 | 
   | 
   */  | 
| 675 | 
  2219020 | 
  local z_crc_t crc_word (z_word_t data) { | 
| 676 | 
   | 
      int k;  | 
| 677 | 
  19971172 | 
      for (k = 0; k < W; k++)  | 
| 678 | 
  17752152 | 
          data = (data >> 8) ^ crc_table[data & 0xff];  | 
| 679 | 
  2219020 | 
      return (z_crc_t)data;  | 
| 680 | 
   | 
  }  | 
| 681 | 
   | 
   | 
| 682 | 
  0 | 
  local z_word_t crc_word_big (z_word_t data) { | 
| 683 | 
   | 
      int k;  | 
| 684 | 
  0 | 
      for (k = 0; k < W; k++)  | 
| 685 | 
  0 | 
          data = (data << 8) ^  | 
| 686 | 
  0 | 
              crc_big_table[(data >> ((W - 1) << 3)) & 0xff];  | 
| 687 | 
  0 | 
      return data;  | 
| 688 | 
   | 
  }  | 
| 689 | 
   | 
   | 
| 690 | 
   | 
  #endif  | 
| 691 | 
   | 
   | 
| 692 | 
   | 
  /* ========================================================================= */  | 
| 693 | 
  2829640 | 
  unsigned long ZEXPORT crc32_z(unsigned long crc, const unsigned char FAR *buf,  | 
| 694 | 
   | 
                                z_size_t len) { | 
| 695 | 
   | 
      /* Return initial CRC, if requested. */  | 
| 696 | 
  2829640 | 
      if (buf == Z_NULL) return 0;  | 
| 697 | 
   | 
   | 
| 698 | 
   | 
  #ifdef DYNAMIC_CRC_TABLE  | 
| 699 | 
   | 
      once(&made, make_crc_table);  | 
| 700 | 
   | 
  #endif /* DYNAMIC_CRC_TABLE */  | 
| 701 | 
   | 
   | 
| 702 | 
   | 
      /* Pre-condition the CRC */  | 
| 703 | 
  2730217 | 
      crc = (~crc) & 0xffffffff;  | 
| 704 | 
   | 
   | 
| 705 | 
   | 
  #ifdef W  | 
| 706 | 
   | 
   | 
| 707 | 
   | 
      /* If provided enough bytes, do a braided CRC calculation. */  | 
| 708 | 
  2730217 | 
      if (len >= N * W + W - 1) { | 
| 709 | 
   | 
          z_size_t blks;  | 
| 710 | 
   | 
          z_word_t const *words;  | 
| 711 | 
   | 
          unsigned endian;  | 
| 712 | 
   | 
          int k;  | 
| 713 | 
   | 
   | 
| 714 | 
   | 
          /* Compute the CRC up to a z_word_t boundary. */  | 
| 715 | 
  1996992 | 
          while (len && ((z_size_t)buf & (W - 1)) != 0) { | 
| 716 | 
  1553188 | 
              len--;  | 
| 717 | 
  1553188 | 
              crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];  | 
| 718 | 
   | 
          }  | 
| 719 | 
   | 
   | 
| 720 | 
   | 
          /* Compute the CRC on as many N z_word_t blocks as are available. */  | 
| 721 | 
  443804 | 
          blks = len / (N * W);  | 
| 722 | 
  443804 | 
          len -= blks * N * W;  | 
| 723 | 
  443804 | 
          words = (z_word_t const *)(intptr_t)buf;  | 
| 724 | 
   | 
   | 
| 725 | 
   | 
          /* Do endian check at execution time instead of compile time, since ARM  | 
| 726 | 
   | 
             processors can change the endianness at execution time. If the  | 
| 727 | 
   | 
             compiler knows what the endianness will be, it can optimize out the  | 
| 728 | 
   | 
             check and the unused branch. */  | 
| 729 | 
  443804 | 
          endian = 1;  | 
| 730 | 
  443804 | 
          if (*(unsigned char *)&endian) { | 
| 731 | 
   | 
              /* Little endian. */  | 
| 732 | 
   | 
   | 
| 733 | 
   | 
              z_crc_t crc0;  | 
| 734 | 
   | 
              z_word_t word0;  | 
| 735 | 
   | 
  #if N > 1  | 
| 736 | 
   | 
              z_crc_t crc1;  | 
| 737 | 
   | 
              z_word_t word1;  | 
| 738 | 
   | 
  #if N > 2  | 
| 739 | 
   | 
              z_crc_t crc2;  | 
| 740 | 
   | 
              z_word_t word2;  | 
| 741 | 
   | 
  #if N > 3  | 
| 742 | 
   | 
              z_crc_t crc3;  | 
| 743 | 
   | 
              z_word_t word3;  | 
| 744 | 
   | 
  #if N > 4  | 
| 745 | 
   | 
              z_crc_t crc4;  | 
| 746 | 
   | 
              z_word_t word4;  | 
| 747 | 
   | 
  #if N > 5  | 
| 748 | 
   | 
              z_crc_t crc5;  | 
| 749 | 
   | 
              z_word_t word5;  | 
| 750 | 
   | 
  #endif  | 
| 751 | 
   | 
  #endif  | 
| 752 | 
   | 
  #endif  | 
| 753 | 
   | 
  #endif  | 
| 754 | 
   | 
  #endif  | 
| 755 | 
   | 
   | 
| 756 | 
   | 
              /* Initialize the CRC for each braid. */  | 
| 757 | 
  443804 | 
              crc0 = crc;  | 
| 758 | 
   | 
  #if N > 1  | 
| 759 | 
  443804 | 
              crc1 = 0;  | 
| 760 | 
   | 
  #if N > 2  | 
| 761 | 
  443804 | 
              crc2 = 0;  | 
| 762 | 
   | 
  #if N > 3  | 
| 763 | 
  443804 | 
              crc3 = 0;  | 
| 764 | 
   | 
  #if N > 4  | 
| 765 | 
  443804 | 
              crc4 = 0;  | 
| 766 | 
   | 
  #if N > 5  | 
| 767 | 
   | 
              crc5 = 0;  | 
| 768 | 
   | 
  #endif  | 
| 769 | 
   | 
  #endif  | 
| 770 | 
   | 
  #endif  | 
| 771 | 
   | 
  #endif  | 
| 772 | 
   | 
  #endif  | 
| 773 | 
   | 
   | 
| 774 | 
   | 
              /*  | 
| 775 | 
   | 
                Process the first blks-1 blocks, computing the CRCs on each braid  | 
| 776 | 
   | 
                independently.  | 
| 777 | 
   | 
               */  | 
| 778 | 
  4317163 | 
              while (--blks) { | 
| 779 | 
   | 
                  /* Load the word for each braid into registers. */  | 
| 780 | 
  3873359 | 
                  word0 = crc0 ^ words[0];  | 
| 781 | 
   | 
  #if N > 1  | 
| 782 | 
  3873359 | 
                  word1 = crc1 ^ words[1];  | 
| 783 | 
   | 
  #if N > 2  | 
| 784 | 
  3873359 | 
                  word2 = crc2 ^ words[2];  | 
| 785 | 
   | 
  #if N > 3  | 
| 786 | 
  3873359 | 
                  word3 = crc3 ^ words[3];  | 
| 787 | 
   | 
  #if N > 4  | 
| 788 | 
  3873359 | 
                  word4 = crc4 ^ words[4];  | 
| 789 | 
   | 
  #if N > 5  | 
| 790 | 
   | 
                  word5 = crc5 ^ words[5];  | 
| 791 | 
   | 
  #endif  | 
| 792 | 
   | 
  #endif  | 
| 793 | 
   | 
  #endif  | 
| 794 | 
   | 
  #endif  | 
| 795 | 
   | 
  #endif  | 
| 796 | 
  3873359 | 
                  words += N;  | 
| 797 | 
   | 
   | 
| 798 | 
   | 
                  /* Compute and update the CRC for each word. The loop should  | 
| 799 | 
   | 
                     get unrolled. */  | 
| 800 | 
  3873359 | 
                  crc0 = crc_braid_table[0][word0 & 0xff];  | 
| 801 | 
   | 
  #if N > 1  | 
| 802 | 
  3873359 | 
                  crc1 = crc_braid_table[0][word1 & 0xff];  | 
| 803 | 
   | 
  #if N > 2  | 
| 804 | 
  3873359 | 
                  crc2 = crc_braid_table[0][word2 & 0xff];  | 
| 805 | 
   | 
  #if N > 3  | 
| 806 | 
  3873359 | 
                  crc3 = crc_braid_table[0][word3 & 0xff];  | 
| 807 | 
   | 
  #if N > 4  | 
| 808 | 
  3873359 | 
                  crc4 = crc_braid_table[0][word4 & 0xff];  | 
| 809 | 
   | 
  #if N > 5  | 
| 810 | 
   | 
                  crc5 = crc_braid_table[0][word5 & 0xff];  | 
| 811 | 
   | 
  #endif  | 
| 812 | 
   | 
  #endif  | 
| 813 | 
   | 
  #endif  | 
| 814 | 
   | 
  #endif  | 
| 815 | 
   | 
  #endif  | 
| 816 | 
  30971418 | 
                  for (k = 1; k < W; k++) { | 
| 817 | 
  27098059 | 
                      crc0 ^= crc_braid_table[k][(word0 >> (k << 3)) & 0xff];  | 
| 818 | 
   | 
  #if N > 1  | 
| 819 | 
  27098059 | 
                      crc1 ^= crc_braid_table[k][(word1 >> (k << 3)) & 0xff];  | 
| 820 | 
   | 
  #if N > 2  | 
| 821 | 
  27098059 | 
                      crc2 ^= crc_braid_table[k][(word2 >> (k << 3)) & 0xff];  | 
| 822 | 
   | 
  #if N > 3  | 
| 823 | 
  27098059 | 
                      crc3 ^= crc_braid_table[k][(word3 >> (k << 3)) & 0xff];  | 
| 824 | 
   | 
  #if N > 4  | 
| 825 | 
  27098059 | 
                      crc4 ^= crc_braid_table[k][(word4 >> (k << 3)) & 0xff];  | 
| 826 | 
   | 
  #if N > 5  | 
| 827 | 
   | 
                      crc5 ^= crc_braid_table[k][(word5 >> (k << 3)) & 0xff];  | 
| 828 | 
   | 
  #endif  | 
| 829 | 
   | 
  #endif  | 
| 830 | 
   | 
  #endif  | 
| 831 | 
   | 
  #endif  | 
| 832 | 
   | 
  #endif  | 
| 833 | 
  27098059 | 
                  }  | 
| 834 | 
   | 
              }  | 
| 835 | 
   | 
   | 
| 836 | 
   | 
              /*  | 
| 837 | 
   | 
                Process the last block, combining the CRCs of the N braids at the  | 
| 838 | 
   | 
                same time.  | 
| 839 | 
   | 
               */  | 
| 840 | 
  443804 | 
              crc = crc_word(crc0 ^ words[0]);  | 
| 841 | 
   | 
  #if N > 1  | 
| 842 | 
  443804 | 
              crc = crc_word(crc1 ^ words[1] ^ crc);  | 
| 843 | 
   | 
  #if N > 2  | 
| 844 | 
  443804 | 
              crc = crc_word(crc2 ^ words[2] ^ crc);  | 
| 845 | 
   | 
  #if N > 3  | 
| 846 | 
  443804 | 
              crc = crc_word(crc3 ^ words[3] ^ crc);  | 
| 847 | 
   | 
  #if N > 4  | 
| 848 | 
  443804 | 
              crc = crc_word(crc4 ^ words[4] ^ crc);  | 
| 849 | 
   | 
  #if N > 5  | 
| 850 | 
   | 
              crc = crc_word(crc5 ^ words[5] ^ crc);  | 
| 851 | 
   | 
  #endif  | 
| 852 | 
   | 
  #endif  | 
| 853 | 
   | 
  #endif  | 
| 854 | 
   | 
  #endif  | 
| 855 | 
   | 
  #endif  | 
| 856 | 
  443804 | 
              words += N;  | 
| 857 | 
  443804 | 
          }  | 
| 858 | 
   | 
          else { | 
| 859 | 
   | 
              /* Big endian. */  | 
| 860 | 
   | 
   | 
| 861 | 
   | 
              z_word_t crc0, word0, comb;  | 
| 862 | 
   | 
  #if N > 1  | 
| 863 | 
   | 
              z_word_t crc1, word1;  | 
| 864 | 
   | 
  #if N > 2  | 
| 865 | 
   | 
              z_word_t crc2, word2;  | 
| 866 | 
   | 
  #if N > 3  | 
| 867 | 
   | 
              z_word_t crc3, word3;  | 
| 868 | 
   | 
  #if N > 4  | 
| 869 | 
   | 
              z_word_t crc4, word4;  | 
| 870 | 
   | 
  #if N > 5  | 
| 871 | 
   | 
              z_word_t crc5, word5;  | 
| 872 | 
   | 
  #endif  | 
| 873 | 
   | 
  #endif  | 
| 874 | 
   | 
  #endif  | 
| 875 | 
   | 
  #endif  | 
| 876 | 
   | 
  #endif  | 
| 877 | 
   | 
   | 
| 878 | 
   | 
              /* Initialize the CRC for each braid. */  | 
| 879 | 
  0 | 
              crc0 = byte_swap(crc);  | 
| 880 | 
   | 
  #if N > 1  | 
| 881 | 
  0 | 
              crc1 = 0;  | 
| 882 | 
   | 
  #if N > 2  | 
| 883 | 
  0 | 
              crc2 = 0;  | 
| 884 | 
   | 
  #if N > 3  | 
| 885 | 
  0 | 
              crc3 = 0;  | 
| 886 | 
   | 
  #if N > 4  | 
| 887 | 
  0 | 
              crc4 = 0;  | 
| 888 | 
   | 
  #if N > 5  | 
| 889 | 
   | 
              crc5 = 0;  | 
| 890 | 
   | 
  #endif  | 
| 891 | 
   | 
  #endif  | 
| 892 | 
   | 
  #endif  | 
| 893 | 
   | 
  #endif  | 
| 894 | 
   | 
  #endif  | 
| 895 | 
   | 
   | 
| 896 | 
   | 
              /*  | 
| 897 | 
   | 
                Process the first blks-1 blocks, computing the CRCs on each braid  | 
| 898 | 
   | 
                independently.  | 
| 899 | 
   | 
               */  | 
| 900 | 
  0 | 
              while (--blks) { | 
| 901 | 
   | 
                  /* Load the word for each braid into registers. */  | 
| 902 | 
  0 | 
                  word0 = crc0 ^ words[0];  | 
| 903 | 
   | 
  #if N > 1  | 
| 904 | 
  0 | 
                  word1 = crc1 ^ words[1];  | 
| 905 | 
   | 
  #if N > 2  | 
| 906 | 
  0 | 
                  word2 = crc2 ^ words[2];  | 
| 907 | 
   | 
  #if N > 3  | 
| 908 | 
  0 | 
                  word3 = crc3 ^ words[3];  | 
| 909 | 
   | 
  #if N > 4  | 
| 910 | 
  0 | 
                  word4 = crc4 ^ words[4];  | 
| 911 | 
   | 
  #if N > 5  | 
| 912 | 
   | 
                  word5 = crc5 ^ words[5];  | 
| 913 | 
   | 
  #endif  | 
| 914 | 
   | 
  #endif  | 
| 915 | 
   | 
  #endif  | 
| 916 | 
   | 
  #endif  | 
| 917 | 
   | 
  #endif  | 
| 918 | 
  0 | 
                  words += N;  | 
| 919 | 
   | 
   | 
| 920 | 
   | 
                  /* Compute and update the CRC for each word. The loop should  | 
| 921 | 
   | 
                     get unrolled. */  | 
| 922 | 
  0 | 
                  crc0 = crc_braid_big_table[0][word0 & 0xff];  | 
| 923 | 
   | 
  #if N > 1  | 
| 924 | 
  0 | 
                  crc1 = crc_braid_big_table[0][word1 & 0xff];  | 
| 925 | 
   | 
  #if N > 2  | 
| 926 | 
  0 | 
                  crc2 = crc_braid_big_table[0][word2 & 0xff];  | 
| 927 | 
   | 
  #if N > 3  | 
| 928 | 
  0 | 
                  crc3 = crc_braid_big_table[0][word3 & 0xff];  | 
| 929 | 
   | 
  #if N > 4  | 
| 930 | 
  0 | 
                  crc4 = crc_braid_big_table[0][word4 & 0xff];  | 
| 931 | 
   | 
  #if N > 5  | 
| 932 | 
   | 
                  crc5 = crc_braid_big_table[0][word5 & 0xff];  | 
| 933 | 
   | 
  #endif  | 
| 934 | 
   | 
  #endif  | 
| 935 | 
   | 
  #endif  | 
| 936 | 
   | 
  #endif  | 
| 937 | 
   | 
  #endif  | 
| 938 | 
  0 | 
                  for (k = 1; k < W; k++) { | 
| 939 | 
  0 | 
                      crc0 ^= crc_braid_big_table[k][(word0 >> (k << 3)) & 0xff];  | 
| 940 | 
   | 
  #if N > 1  | 
| 941 | 
  0 | 
                      crc1 ^= crc_braid_big_table[k][(word1 >> (k << 3)) & 0xff];  | 
| 942 | 
   | 
  #if N > 2  | 
| 943 | 
  0 | 
                      crc2 ^= crc_braid_big_table[k][(word2 >> (k << 3)) & 0xff];  | 
| 944 | 
   | 
  #if N > 3  | 
| 945 | 
  0 | 
                      crc3 ^= crc_braid_big_table[k][(word3 >> (k << 3)) & 0xff];  | 
| 946 | 
   | 
  #if N > 4  | 
| 947 | 
  0 | 
                      crc4 ^= crc_braid_big_table[k][(word4 >> (k << 3)) & 0xff];  | 
| 948 | 
   | 
  #if N > 5  | 
| 949 | 
   | 
                      crc5 ^= crc_braid_big_table[k][(word5 >> (k << 3)) & 0xff];  | 
| 950 | 
   | 
  #endif  | 
| 951 | 
   | 
  #endif  | 
| 952 | 
   | 
  #endif  | 
| 953 | 
   | 
  #endif  | 
| 954 | 
   | 
  #endif  | 
| 955 | 
  0 | 
                  }  | 
| 956 | 
   | 
              }  | 
| 957 | 
   | 
   | 
| 958 | 
   | 
              /*  | 
| 959 | 
   | 
                Process the last block, combining the CRCs of the N braids at the  | 
| 960 | 
   | 
                same time.  | 
| 961 | 
   | 
               */  | 
| 962 | 
  0 | 
              comb = crc_word_big(crc0 ^ words[0]);  | 
| 963 | 
   | 
  #if N > 1  | 
| 964 | 
  0 | 
              comb = crc_word_big(crc1 ^ words[1] ^ comb);  | 
| 965 | 
   | 
  #if N > 2  | 
| 966 | 
  0 | 
              comb = crc_word_big(crc2 ^ words[2] ^ comb);  | 
| 967 | 
   | 
  #if N > 3  | 
| 968 | 
  0 | 
              comb = crc_word_big(crc3 ^ words[3] ^ comb);  | 
| 969 | 
   | 
  #if N > 4  | 
| 970 | 
  0 | 
              comb = crc_word_big(crc4 ^ words[4] ^ comb);  | 
| 971 | 
   | 
  #if N > 5  | 
| 972 | 
   | 
              comb = crc_word_big(crc5 ^ words[5] ^ comb);  | 
| 973 | 
   | 
  #endif  | 
| 974 | 
   | 
  #endif  | 
| 975 | 
   | 
  #endif  | 
| 976 | 
   | 
  #endif  | 
| 977 | 
   | 
  #endif  | 
| 978 | 
  0 | 
              words += N;  | 
| 979 | 
  0 | 
              crc = byte_swap(comb);  | 
| 980 | 
   | 
          }  | 
| 981 | 
   | 
   | 
| 982 | 
   | 
          /*  | 
| 983 | 
   | 
            Update the pointer to the remaining bytes to process.  | 
| 984 | 
   | 
           */  | 
| 985 | 
  443804 | 
          buf = (unsigned char const *)words;  | 
| 986 | 
  443804 | 
      }  | 
| 987 | 
   | 
   | 
| 988 | 
   | 
  #endif /* W */  | 
| 989 | 
   | 
   | 
| 990 | 
   | 
      /* Complete the computation of the CRC on any remaining bytes. */  | 
| 991 | 
  3660262 | 
      while (len >= 8) { | 
| 992 | 
  930045 | 
          len -= 8;  | 
| 993 | 
  930045 | 
          crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];  | 
| 994 | 
  930045 | 
          crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];  | 
| 995 | 
  930045 | 
          crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];  | 
| 996 | 
  930045 | 
          crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];  | 
| 997 | 
  930045 | 
          crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];  | 
| 998 | 
  930045 | 
          crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];  | 
| 999 | 
  930045 | 
          crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];  | 
| 1000 | 
  930045 | 
          crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];  | 
| 1001 | 
   | 
      }  | 
| 1002 | 
  9997354 | 
      while (len) { | 
| 1003 | 
  7267137 | 
          len--;  | 
| 1004 | 
  7267137 | 
          crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];  | 
| 1005 | 
   | 
      }  | 
| 1006 | 
   | 
   | 
| 1007 | 
   | 
      /* Return the CRC, post-conditioned. */  | 
| 1008 | 
  2730217 | 
      return crc ^ 0xffffffff;  | 
| 1009 | 
  2829640 | 
  }  | 
| 1010 | 
   | 
   | 
| 1011 | 
   | 
  #endif  | 
| 1012 | 
   | 
   | 
| 1013 | 
   | 
  /* ========================================================================= */  | 
| 1014 | 
  2829638 | 
  unsigned long ZEXPORT crc32(unsigned long crc, const unsigned char FAR *buf,  | 
| 1015 | 
   | 
                              uInt len) { | 
| 1016 | 
  2829638 | 
      return crc32_z(crc, buf, len);  | 
| 1017 | 
   | 
  }  | 
| 1018 | 
   | 
   | 
| 1019 | 
   | 
  /* ========================================================================= */  | 
| 1020 | 
  15955 | 
  uLong ZEXPORT crc32_combine64(uLong crc1, uLong crc2, z_off64_t len2) { | 
| 1021 | 
   | 
  #ifdef DYNAMIC_CRC_TABLE  | 
| 1022 | 
   | 
      once(&made, make_crc_table);  | 
| 1023 | 
   | 
  #endif /* DYNAMIC_CRC_TABLE */  | 
| 1024 | 
  15955 | 
      return multmodp(x2nmodp(len2, 3), crc1) ^ (crc2 & 0xffffffff);  | 
| 1025 | 
   | 
  }  | 
| 1026 | 
   | 
   | 
| 1027 | 
   | 
  /* ========================================================================= */  | 
| 1028 | 
  15955 | 
  uLong ZEXPORT crc32_combine(uLong crc1, uLong crc2, z_off_t len2) { | 
| 1029 | 
  15955 | 
      return crc32_combine64(crc1, crc2, (z_off64_t)len2);  | 
| 1030 | 
   | 
  }  | 
| 1031 | 
   | 
   | 
| 1032 | 
   | 
  /* ========================================================================= */  | 
| 1033 | 
  0 | 
  uLong ZEXPORT crc32_combine_gen64(z_off64_t len2) { | 
| 1034 | 
   | 
  #ifdef DYNAMIC_CRC_TABLE  | 
| 1035 | 
   | 
      once(&made, make_crc_table);  | 
| 1036 | 
   | 
  #endif /* DYNAMIC_CRC_TABLE */  | 
| 1037 | 
  0 | 
      return x2nmodp(len2, 3);  | 
| 1038 | 
   | 
  }  | 
| 1039 | 
   | 
   | 
| 1040 | 
   | 
  /* ========================================================================= */  | 
| 1041 | 
  0 | 
  uLong ZEXPORT crc32_combine_gen(z_off_t len2) { | 
| 1042 | 
  0 | 
      return crc32_combine_gen64((z_off64_t)len2);  | 
| 1043 | 
   | 
  }  | 
| 1044 | 
   | 
   | 
| 1045 | 
   | 
  /* ========================================================================= */  | 
| 1046 | 
  0 | 
  uLong ZEXPORT crc32_combine_op(uLong crc1, uLong crc2, uLong op) { | 
| 1047 | 
  0 | 
      return multmodp(op, crc1) ^ (crc2 & 0xffffffff);  | 
| 1048 | 
   | 
  }  |